From Gemini Observatory: “OCTOCAM Looks Toward a New Era of Discovery”

NOAO

Gemini Observatory
Gemini Observatory

April 5, 2017
Science/Technical Contacts:

Stephen Goodsell
Gemini Program Manager
Durham University, Durham, UK
Email: sgoodsell”at”gemini.edu
Cell: +44 7539256513

Scot Kleinman
Gemini Head of Development
Gemini Observatory, Hilo, Hawai‘i
Email: kleinman”at”gemini.edu
Office: 808 074-2618

Media Contact:

Peter Michaud
Public Information and Outreach Manager
Gemini Observatory, Hilo, Hawai‘i
Email: pmichaud”at”gemini.edu
Desk: 808 974-2510
Cell: 808 936-6643

1
OCTOCAM’s near-infrared optical bench. The near-infrared section is cryogenically cooled in a vacuum to operate at a temperature below 80 Kelvin.

2
OCTOCAM’s visible optical bench. The visible section is kept at about the temperature of the outside telescope environment.

Gemini Observatory announces the development of a major new facility-class broadband optical and near-infrared imager and spectrograph named OCTOCAM.

“OCTOCAM provides Gemini with a unique capability as we look ahead to the Large Synoptic Survey Telescope era,” says Stephen Goodsell who manages the instrument program for Gemini. “The instrument will be able to rapidly acquire transient objects and simultaneously obtain eight images or spectral bands from each target,” according to Goodsell. “This is important because it provides a much greater level of information and detail, which will undoubtedly lead to transformational scientific discoveries.”

The power of the instrument comes from its ability to simultaneously observe over an extremely wide swath of the optical and infrared spectrum. It is expected that when the instrument begins commissioning and observations in 2022 it will serve as an ideal complement to the discoveries made with the Large Synoptic Survey Telescope (LSST) by providing rapid follow-up capabilities.


LSST Camera, built at SLAC



LSST telescope, currently under construction at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes.

Once completed the instrument is slated for installation on the 8-meter Gemini South telescope which is located adjacent to the current construction site of the LSST on Cerro Pachón in Chile.

“Two core tenets of Gemini’s future vision are to lead as a premier facility for taking advantage of the upcoming discoveries from the LSST; while offering broad, flexible capabilities that enable a wide-range of individual PI-driven science,” says Scot Kleinman, Associate Director of Development at Gemini. “OCTOCAM, with its eight simultaneous channels, including both imaging and spectroscopic capabilities, moves Gemini a giant step closer to this vision. We are thrilled to make this transformative instrument available to our community in early 2022.”

Chris Davis, Program Officer at the U.S. National Science Foundation (NSF, which also funds the LSST), notes that because Gemini has international funding participants that include the U.S., Canada, Brazil, Argentina, and Chile, this project spans the globe. “All of the Gemini participants contribute to the development of instruments like OCTOCAM,” says Davis. However, he adds, “OCTOCAM really captures the spirit of international cooperation with the global network of researchers that are designing and building this instrument.”

In late March the Association of Universities for Research in Astronomy (AURA, which operates Gemini on behalf of the NSF) and the Southwest Research Institute (SwRI) signed a contract to build and commission the instrument. With the contract signed work began immediately on the conceptual design of the instrument. Please see SwRI press release here.

“Using eight state-of-the-art detectors, OCTOCAM will simultaneously observe visible and invisible light spectra almost instantaneously, in tens of milliseconds,” said Dr. Peter Roming, a staff scientist at SwRI who will serve as project manager and co-principal investigator. SwRI will oversee systems engineering, providing detectors, electronics, and software development for this refrigerator-sized, ground-based apparatus. The Institute will also lead the integration and testing of the device.

“It’s really exciting to be working on an 8-meter class instrument that will be used to observe the whole Universe, from the oldest stars to nearby exoplanets,” Roming said. “The imaging, spectral analysis, and temporal resolution combined with exceptional sensitivity make OCTOCAM a unique, unparalleled instrument.”

“OCTOCAM has been designed to revolutionize the research in many fields of astrophysics. To achieve this, a large, international group of scientists determined the key science questions to be addressed in the coming decade and those were used subsequently to define the technical characteristics that will allow OCTOCAM to answer them,” says Antonio de Ugarte Postigo, scientist at the Instituto de Astrofísica of Andalucía (IAA-CSIC) in Granada, Spain and principal investigator of the project.

“We look forward to a work that will involve the full scientific community of Gemini. OCTOCAM will open a new window of research by occupying a region in the spectral coverage-spectral resolution-time resolution diagram not covered by any other instrument in the world,” says Christina Thöne, scientist at IAA, Granada and Deputy Project Manager of OCTOCAM.

“I am very excited about the science that we will be able to do with OCTOCAM,” said Dr. Alexander van der Horst, an assistant professor of astrophysics at the George Washington University in Washington, DC, and the project scientist for OCTOCAM. “The capabilities of OCTOCAM make it a unique instrument, and it will provide a wealth of information on a very broad range of objects, from rocks of ice in our own solar system to the most massive stars exploding at the edge of our Universe.”

Please visit OCTOCAM page for the list of team members and more.

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

Gemini/North telescope at Mauna Kea, Hawaii, USA
Gemini/North telescope at Mauna Kea, Hawaii, USA

Gemini South
Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile

AURA Icon

Gemini’s mission is to advance our knowledge of the Universe by providing the international Gemini Community with forefront access to the entire sky.

The Gemini Observatory is an international collaboration with two identical 8-meter telescopes. The Frederick C. Gillett Gemini Telescope is located on Mauna Kea, Hawai’i (Gemini North) and the other telescope on Cerro Pachón in central Chile (Gemini South); together the twin telescopes provide full coverage over both hemispheres of the sky. The telescopes incorporate technologies that allow large, relatively thin mirrors, under active control, to collect and focus both visible and infrared radiation from space.

The Gemini Observatory provides the astronomical communities in six partner countries with state-of-the-art astronomical facilities that allocate observing time in proportion to each country’s contribution. In addition to financial support, each country also contributes significant scientific and technical resources. The national research agencies that form the Gemini partnership include: the US National Science Foundation (NSF), the Canadian National Research Council (NRC), the Chilean Comisión Nacional de Investigación Cientifica y Tecnológica (CONICYT), the Australian Research Council (ARC), the Argentinean Ministerio de Ciencia, Tecnología e Innovación Productiva, and the Brazilian Ministério da Ciência, Tecnologia e Inovação. The observatory is managed by the Association of Universities for Research in Astronomy, Inc. (AURA) under a cooperative agreement with the NSF. The NSF also serves as the executive agency for the international partnership.

Advertisements