From LBNL: “New Measurements Suggest ‘Antineutrino Anomaly’ Fueled by Modeling Error”

Berkeley Logo

Berkeley Lab

April 5, 2017

1
Antineutrinos produced by reactors at the Daya Bay Nuclear Power Plant complex in Shenzhen, China, are measured in a particle physics experiment that is conducted by an international collaboration involving Berkeley Lab researchers. (Credit: Roy Kaltschmidt/Berkeley Lab)

Daya Bay, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China

Results from a new scientific study may shed light on a mismatch between predictions and recent measurements of ghostly particles streaming from nuclear reactors—the so-called “reactor antineutrino anomaly,” which has puzzled physicists since 2011.

The anomaly refers to the fact that scientists tracking the production of antineutrinos—emitted as a byproduct of the nuclear reactions that generate electric power—have routinely detected fewer antineutrinos than they expected. One theory is that some neutrinos are morphing into an undetectable form known as “sterile” neutrinos.

But the latest results [submitted to Phys. Rev. Letters] from the Daya Bay reactor neutrino experiment, located at a nuclear power complex in China, suggest a simpler explanation—a miscalculation in the predicted rate of antineutrino production for one particular component of nuclear reactor fuel.

Antineutrinos carry away about 5 percent of the energy released as the uranium and plutonium atoms that fuel the reactor split, or “fission.” The composition of the fuel changes as the reactor operates, with the decays of different forms of uranium and plutonium (called “isotopes”) producing different numbers of antineutrinos with different energy ranges over time, even as the reactor steadily produces electrical power.

The new results from Daya Bay—where scientists have measured more than 2 million antineutrinos produced by six reactors during almost four years of operation—have led scientists to reconsider how the composition of the fuel changes over time and how many neutrinos come from each of the decay chains.

The scientists found that antineutrinos produced by nuclear reactions that result from the fission of uranium-235, a fissile isotope of uranium common in nuclear fuel, were inconsistent with predictions.

2
In this chart, the yields of reactor antineutrinos produced by plutonium-239 (vertical) and uranium-235 (horizontal) measured by the Daya Bay experiment (red triangle at center) are compared to the theoretical prediction (black dot at right), showing a discrepancy that could explain the so-called “antineutrino anomaly.” (Credit: Daya Bay Collaboration)

“The model predicts almost 8 percent more antineutrinos coming from decays of uranium-235 than what we have measured,” said Kam-Biu Luk, a Daya Bay Collaboration co-spokesperson who is a faculty senior scientist at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and a physics professor at UC Berkeley.

Patrick Tsang, who conceptualized a new data-analysis technique that was key in this study while working as a postdoctoral fellow in Berkeley Lab’s Physics Division, added, “The finding is surprising because it is the first time we are able to identify the disagreement with predictions for a particular fission isotope.” Tsang is now a project scientist working at SLAC National Accelerator Laboratory.

Meanwhile, the number of antineutrinos from plutonium-239, the second most common fuel ingredient, was found to agree with predictions, although this measurement is less precise than that for uraninum-235.

If sterile neutrinos—theoretical particles that are a possible source of the universe’s vast unseen or “dark” matter—were the source of the anomaly, then the experimenters would observe an equal depletion in the number of antineutrinos for each of the fuel ingredients, but the experimental results disfavor this hypothesis.

The latest analysis suggests that a miscalculation of the rate of antineutrinos produced by the fission of uranium-235 over time, rather than the presence of sterile neutrinos, may be the explanation for the anomaly. These results can be confirmed by new experiments that will measure antineutrinos from reactors fueled almost entirely by uranium-235.

The work could help scientists at Daya Bay and similar experiments understand the fluctuating rates and energies of those antineutrinos produced by specific ingredients in the nuclear fission process throughout the nuclear fuel cycle. An improved understanding of the fuel evolution inside a nuclear reactor may also be helpful for other nuclear science applications.

3
A view inside a particle detector tank at Daya Bay, where photomultiplier tubes measure signals from antineutrinos. (Credit: Roy Kaltschmidt/Berkeley Lab)

Situated about 32 miles northeast of Hong Kong, the Daya Bay experiment uses an array of detectors to capture antineutrino signals from particle interactions occurring in a series of liquid tanks. The Daya Bay collaboration involves 243 researchers at 41 institutions in the U.S., China, Chile, Russia and the Czech Republic.

Daya Bay physics research is supported by the U.S. Department of Energy’s Office of Science and the National Science Foundation.

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

A U.S. Department of Energy National Laboratory Operated by the University of California

University of California Seal

DOE Seal

Advertisements