From Cornell: “New electron microscope sees more than an image”

Cornell Bloc

Cornell University

March 30, 2017
Bill Steele

Sol Gruner, left, professor of physics, and David Muller, professor of applied and engineering physics. Chris Kitchen/University Photography

. Their electron microscope pixel array detector (EMPAD) yields not just an image, but a wealth of information about the electrons that create the image and, from that, more about the structure of the sample.

“We can extract local strains, tilts, rotations, polarity and even electric and magnetic fields,” explained David Muller, professor of applied and engineering physics, who developed the new device with Sol Gruner, professor of physics, and members of their research groups.

Cornell’s Center for Technology Licensing (CTL) has licensed the invention to FEI, a leading manufacturer of electron microscopes (a division of Thermo Fisher Scientific, which supplies products and services for the life sciences through several brands). FEI expects to complete the commercialization of the design and offer the detector for new and retrofitted electron microscopes this year.

“It’s mind-boggling to contemplate what researchers around the world will discover through this match of Cornell’s deep expertise in detector science with market leader Thermo Fisher Scientific,” said Patrick Govang, technology licensing officer at CTL.

The scientists described their work in the February 2016 issue of the journal Microscopy and Microanalysis.

In the usual scanning transmission electron microscope (STEM), a narrow beam of electrons is fired down through a sample, scanning back and forth to produce an image. A detector underneath reads the varying intensity of electrons coming through and sends a signal that draws an image on a computer screen.

The EMPAD that replaces the usual detector is made up of a 128×128 array of electron-sensitive pixels, each 150 microns (millionths of a meter) square, bonded to an integrated circuit that reads out the signals – somewhat like the array of light-sensitive pixels in the sensor in a digital camera, but not to form an image. Its purpose is to detect the angles at which electrons emerge, as each electron hits a different pixel. The EMPAD is a spinoff of X-ray detectors the physicists have built for X-ray crystallography work at the Cornell High Energy Synchrotron Source (CHESS), and it can work in a similar way to reveal the atomic structure of a sample.

Combined with the focused beam of the electron microscope, the detector allows researchers to build up a “four-dimensional” map of both position and momentum of the electrons as they pass through a sample to reveal the atomic structure and forces inside. The EMPAD is unusual in its speed, sensitivity and wide range of intensities it can record – from detecting a single electron to intense beams containing hundreds of thousands or even a million electrons.

“It would be like taking a photograph of a sunset that showed both details on the surface of the sun and the details of darkest shadows,” Muller explained.

See the full article here .

Please help promote STEM in your local schools.


Stem Education Coalition
Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.