From MIT: “Scientists identify a black hole choking on stardust”

MIT News

MIT Widget

MIT News

March 14, 2017
Jennifer Chu

1
In this artist’s rendering, a thick accretion disk has formed around a supermassive black hole following the tidal disruption of a star that wandered too close. Stellar debris has fallen toward the black hole and collected into a thick chaotic disk of hot gas. Flashes of X-ray light near the center of the disk result in light echoes that allow astronomers to map the structure of the funnel-like flow, revealing for the first time strong gravity effects around a normally quiescent black hole.
Image: NASA/Swift/Aurore Simonnet, Sonoma State University

Data suggest black holes swallow stellar debris in bursts.

In the center of a distant galaxy, almost 300 million light years from Earth, scientists have discovered a supermassive black hole that is “choking” on a sudden influx of stellar debris.

In a paper published today in Astrophysical Journal Letters, researchers from MIT, NASA’s Goddard Space Flight Center, and elsewhere report on a “tidal disruption flare” — a dramatic burst of electromagnetic activity that occurs when a black hole obliterates a nearby star. The flare was first discovered on Nov. 11, 2014, and scientists have since trained a variety of telescopes on the event to learn more about how black holes grow and evolve.

The MIT-led team looked through data collected by two different telescopes and identified a curious pattern in the energy emitted by the flare: As the obliterated star’s dust fell into the black hole, the researchers observed small fluctuations in the optical and ultraviolet (UV) bands of the electromagnetic spectrum. This very same pattern repeated itself 32 days later, this time in the X-ray band.

The researchers used simulations of the event performed by others to infer that such energy “echoes” were produced from the following scenario: As a star migrated close to the black hole, it was quickly ripped apart by the black hole’s gravitational energy. The resulting stellar debris, swirling ever closer to the black hole, collided with itself, giving off bursts of optical and UV light at the collision sites. As it was pulled further in, the colliding debris heated up, producing X-ray flares, in the same pattern as the optical bursts, just before the debris fell into the black hole.

“In essence, this black hole has not had much to feed on for a while, and suddenly along comes an unlucky star full of matter,” says Dheeraj Pasham, the paper’s first author and a postdoc in MIT’s Kavli Institute for Astrophysics and Space Research. “What we’re seeing is, this stellar material is not just continuously being fed onto the black hole, but it’s interacting with itself — stopping and going, stopping and going. This is telling us that the black hole is ‘choking’ on this sudden supply of stellar debris.”

Pasham’s co-authors include MIT Kavli postdoc Aleksander Sadowski and researchers from NASA’s Goddard Space Flight Center, the University of Maryland, the Harvard-Smithsonian Center for Astrophysics, Columbia University, and Johns Hopkins University.

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

MIT Seal

The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

MIT Campus

Advertisements