From EarthSky: “Today in science: Quasar mystery solved” A Fascinating Look Back to February 5, 1963

1

EarthSky

February 5, 2017
Deborah Byrd

1
Maarten Schmidt via CalTech

February 5, 1963. On this date, Caltech astronomer Maarten Schmidt solved a puzzle about the quasi-stellar radio source 3C273 that changed the way we think about our universe.

1
X-ray image of 3C273 and its jet. Today, this quasar is known to lie at the center of a giant elliptical galaxy. Image via Chandra X-ray Observatory.

This object appeared starlike, like a point of light, with a mysterious jet. But its spectrum – the range of wavelengths of its light – looked odd. Astronomers routinely use spectra to learn the composition of distant objects. But, in 1963, emission lines in the spectrum of 3C273 didn’t appear to match any known chemical elements. Schmidt had a sudden realization that 3C273 contained the very ordinary element hydrogen. He realized that the spectral lines of hydrogen appeared strange because they were highly shifted toward the red end of the spectrum. Such a large red shift could occur if 3C273 were very distant, about three billion light-years away.

Dr. Schmidt told EarthSky that he recognized immediately the implications of his revelation. He said:

“This realization came immediately: my wife still remembers that I was pacing up and down much of the evening”

The implications were just this. To be so far away and still visible, 3C273 must be intrinsically very bright and very powerful. It’s now thought to shine with the light of two trillion stars like our sun. That’s hundreds of times the light of our entire Milky Way galaxy. Yet 3C273 appears to be less than a light-year across, in contrast to 100,000 light-years for our Milky Way.

So 3C273 is not only distant. It is also exceedingly luminous, implying powerful energy-producing processes unknown in 1963. Schmidt announced his revelation about quasars in the journal Nature on March 16, 1963.

Today, hundreds of thousands of quasars are known, and many are more distant and more powerful than 3C273. It’s no exaggeration to say they turned the science of astronomy on its ear. Why, for example, are these powerful quasars located so far away in space? Because light travels at a finite speed (186,000 miles per second), we are seeing distant objects in space in the distant past. In other words, quasars existed in early universe. They do not exist in our time. Why?

In the 1960s, 3C273 and other quasars like it were strong evidence against the Fred Hoyle’s Steady State theory, which suggested that matter is continuously being created as the universe expands, leading to a universe that is the same everywhere. The quasars showed the universe is not the same everywhere and thus helped usher in Big Bang cosmology.

2
Timeline of the universe. A representation of the evolution of the universe over 13.77 billion years. The far left depicts the earliest moment we can now probe, when a period of “inflation” produced a burst of exponential growth in the universe. (Size is depicted by the vertical extent of the grid in this graphic.) For the next several billion years, the expansion of the universe gradually slowed down as the matter in the universe pulled on itself via gravity. More recently, the expansion has begun to speed up again as the repulsive effects of dark energy have come to dominate the expansion of the universe. The afterglow light seen by WMAP was emitted about 375,000 years after inflation and has traversed the universe largely unimpeded since then. The conditions of earlier times are imprinted on this light; it also forms a backlight for later developments of the universe.
Date circa 2006
Author NASA/WMAP Science Team

ESA/Planck supercedes WMAP
3
21 March 2013
ESA’s Planck satellite has delivered its first all-sky image of the Cosmic Microwave Background (CMB), bringing with it new challenges about our understanding of the origin and evolution of the cosmos. The image has provided the most precise picture of the early Universe so far.

But Steady State theory had been losing ground, even before 1963. The biggest change caused by Maarten Schmidt’s revelation about the quasar 3C273 was in the way we think about our universe.

In other words, the idea that 3C273 was extremely luminous, and yet occupied such a relatively small space, suggested powerful energies that astronomers had not contemplated before. 3C273 gave astronomers one of their first hints that we live in a universe of colossal explosive events – and extreme temperatures and luminosities – a place where mysterious black holes abound and play a major role.

According to a March 2013 email from Caltech:

In 1963, Schmidt’s discovery gave us an unprecedented look at how the universe behaved at a much younger period in its history – billions of years before the birth of the sun and its planets. Later, Schmidt, along with his colleague Donald Lynden-Bell, discovered that quasars are galaxies harboring supermassive black holes billions of light-years away – not stars in our own galaxy, as was once believed. His seminal work dramatically increased the scale of the observable universe and advanced our present view on the violent nature of the universe in which massive black holes play a dominant role.

What are quasars? Astronomers today believe that a quasar is a compact region in the center of a galaxy in the early universe. The compact region is thought to surround a central supermassive black hole, much like the black hole thought to reside in the center of our own Milky Way galaxy and many (or most) other galaxies. The powerful luminosity of a quasar is thought to be the result of processes taking place in an accretion disk, or disk of material surrounding the black hole, as these supermassive black holes consume stars that pass too near.

4
ULAS J1120+0641, farthest quasar known as of 2011. The quasar appears as a faint red dot close to the center. Composite image created from the Sloan Digital Sky Survey and the UKIRT Infrared Deep Sky Survey, via Wikimedia Commons.

SDSS Telescope at Apache Point Observatory, NM, USA
SDSS Telescope at Apache Point Observatory, NM, USA

UKIRT, located on Mauna Kea, Hawaii, USA as part of Mauna Kea Observatory
UKIRT interior
UKIRT, located on Mauna Kea, Hawaii, USA as part of Mauna Kea Observatory

The Chinese-born U.S. astrophysicist Hong-Yee Chiu coined the name quasar in May 1964, in the publication Physics Today. He wrote:

So far, the clumsily long name ‘quasi-stellar radio sources’ is used to describe these objects. Because the nature of these objects is entirely unknown, it is hard to prepare a short, appropriate nomenclature for them so that their essential properties are obvious from their name. For convenience, the abbreviated form ‘quasar’ will be used throughout this paper.

Today, the farthest known quasar is ULAS J1120+0641. Its co-moving distance is 28.85 billion light-years.

Bottom line: On February 5 1963, astronomer Maarten Schmidt’s flash of inspiration led to the understanding that quasi-stellar radio sources, or quasars, exist in the very distant universe. Quasars became the most distant, and most luminous, objects known. They changed the way we think about the universe.

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

Advertisements