From ESO: “Highest Resolution Image of Eta Carinae”

ESO 50 Large

European Southern Observatory

19 October 2016

Gerd Weigelt
Max-Planck-Institut für Radioastronomie
Bonn, Germany
Tel: +49 228 525 243
Email: weigelt@mpifr-bonn.mpg.de

Dieter Schertl
Max-Planck-Institut für Radioastronomie
Bonn, Germany
Tel: +49 228 525 301
Email: ds@mpifr-bonn.mpg.de

Norbert Junkes
Public Information Officer, Max-Planck-Institut für Radioastronomie
Bonn, Germany
Tel: +49 228 525 399
Email: njunkes@mpifr-bonn.mpg.de

Mathias Jäger
Public Information Officer
Garching bei München, Germany
Tel: +49 176 62397500
Email: mjaeger@partner.eso.org

1
An international team of astronomers have used the Very Large Telescope Interferometer to image the Eta Carinae star system in the greatest detail ever achieved.

ESO VLTI image
ESO VLTI

They found new and unexpected structures within the binary system, including in the area between the two stars where extremely high velocity stellar winds are colliding. These new insights into this enigmatic star system could lead to a better understanding of the evolution of very massive stars.

2
This image represent the best image of the Eta Carinae star system ever made. The observations were made with the Very Large Telescope Interferometer and could lead to a better understanding of the evolution of very massive stars. Credit: ESO

3
This image is a colour composite made from exposures from the Digitized Sky Survey 2 (DSS2). The field of view is approximately 4.7 x 4.9 degrees.
Credit: ESO/Digitized Sky Survey 2. Acknowledgment: Davide De Martin.

4
This spectacular panoramic view combines a new image of the field around the Wolf–Rayet star WR 22 in the Carina Nebula (right) with an earlier picture of the region around the unique star Eta Carinae in the heart of the nebula (left). The picture was created from images taken with the Wide Field Imager [WFI] on the MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory in Chile.

MPG/ESO 2.2 meter telescope at La Silla, Chile
ESO WFI LaSilla 2.2-m MPG/ESO telescope at La Silla
MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory in Chile; WFI

5
This new image of the luminous blue variable Eta Carinae was taken with the NACO near-infrared adaptive optics instrument on ESO’s Very Large Telescope, yielding an incredible amount of detail. The images clearly shows a bipolar structure as well as the jets coming out from the central star. The image was obtained by the Paranal Science team and processed by Yuri Beletsky (ESO) and Hännes Heyer (ESO). It is based on data obtained through broad (J, H, and K; 90 second exposure time per filters) and narrow-bands (1.64, 2.12, and 2.17 microns; probing iron, molecular and atomic hydrogen, respectively; 4 min per filter). Credit: ESO

Led by Gerd Weigelt from the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, a team of astronomers have used the Very Large Telescope Interferometer (VLTI) at ESO’s Paranal Observatory to take a unique image of the Eta Carinae star system in the Carina Nebula.

This colossal binary system consists of two massive stars orbiting each other and is very active, producing stellar winds which travel at velocities of up to ten million kilometres per hour [1]. The zone between the two stars where the winds from each collide is very turbulent, but until now it could not be studied.

The power of the Eta Carinae binary pair creates dramatic phenomena. A “Great Eruption” in the system was observed by astronomers in the 1830s. We now know that this was caused by the larger star of the pair expelling huge amounts of gas and dust in a short amount of time, which led to the distinctive lobes, known as the Homunculus Nebula, that we see in the system today. The combined effect of the two stellar winds as they smash into each other at extreme speeds is to create temperatures of millions of degrees and intense deluges of X-ray radiation.

The central area where the winds collide is so comparatively tiny — a thousand times smaller than the Homunculus Nebula — that telescopes in space and on the ground so far have not been able to image them in detail. The team has now utilised the powerful resolving ability of the VLTI instrument AMBER to peer into this violent realm for the first time. A clever combination — an interferometer — of three of the four Auxiliary Telescopes at the VLT lead to a tenfold increase in resolving power in comparison to a single VLT Unit Telescope. This delivered the sharpest ever image of the system and yielded unexpected results about its internal structures.

The new VLTI image clearly depict the structure which exists between the two Eta Carinae-stars. An unexpected fan-shaped structure was observed where the raging wind from the smaller, hotter star crashes into the denser wind from the larger of the pair.

“Our dreams came true, because we can now get extremely sharp images in the infrared. The VLTI provides us with a unique opportunity to improve our physical understanding of Eta Carinae and many other key objects”, says Gerd Weigelt.

In addition to the imaging, the spectral observations of the collision zone made it possible to measure the velocities of the intense stellar winds [2]. Using these velocities, the team of astronomers were able to produce more accurate computer models of the internal structure of this fascinating stellar system, which will help increase our understanding of how these kind of extremely high mass stars lose mass as they evolve.

Team member Dieter Schertl (MPIfR) looks forward: “The new VLTI instruments GRAVITY and MATISSE will allow us to get interferometric images with even higher precision and over a wider wavelength range. This wide wavelength range is needed to derive the physical properties of many astronomical objects.”
Notes

[1] The two stars are so massive and bright that the radiation they produce rips off their surfaces and spews them into space. This expulsion of stellar material is referred to as stellar “wind”, and it can travel at millions of kilometres per hour.

[2] Measurements were done through the Doppler effect. Astronomers use the Doppler effect (or shifts) to calculate precisely how fast stars and other astronomical objects move toward or away from Earth. The movement of an object towards or away from us causes a slight shift in its spectral lines. The velocity of the motion can be calculated from this shift.
More information

This research was presented in a paper to appear in Astronomy and Astrophysics.

The team is composed of G. Weigelt (Max Planck Institute for Radio Astronomy, Germany), K.-H. Hofmann (Max Planck Institute for Radio Astronomy, Germany), D. Schertl (Max Planck Institute for Radio Astronomy, Germany), N. Clementel (South African Astronomical Observatory, South Africa) , M.F. Corcoran (Goddard Space Flight Center, USA; Universities Space Research Association, USA), A. Damineli (Universidade de São Paulo, Brazil ), W.-J. de Wit (European Southern Observatory, Chile), R. Grellmann (Universität zu Köln, Germany), J. Groh (The University of Dublin, Ireland ), S. Guieu (European Southern Observatory, Chile), T. Gull (Goddard Space Flight Center, USA), M. Heininger (Max Planck Institute for Radio Astronomy, Germany) , D.J. Hillier (University of Pittsburgh, USA), C.A. Hummel (European Southern Observatory, Germany), S. Kraus (University of Exeter, UK), T. Madura (Goddard Space Flight Center, USA), A. Mehner (European Southern Observatory, Chile), A. Mérand ( European Southern Observatory, Chile), F. Millour (Université de Nice Sophia Antipolis, France), A.F.J. Moffat (Université de Montréal, Canada), K. Ohnaka (Universidad Católica del Norte, Chile), F. Patru (Osservatorio Astrofisico di Arcetri, Italy), R.G. Petrov (Université de Nice Sophia Antipolis, France), S. Rengaswamy (Indian Institute of Astrophysics, India) , N.D. Richardson (The University of Toledo, USA), T. Rivinius (European Southern Observatory, Chile), M. Schöller (European Southern Observatory, Germany), M. Teodoro (Goddard Space Flight Center, USA) , and M. Wittkowski (European Southern Observatory, Germany)

See the full article here .

Please help promote STEM in your local schools.
STEM Icon

Stem Education Coalition
Visit ESO in Social Media-

Facebook

Twitter

YouTube

ESO Bloc Icon

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

ESO LaSilla
LaSilla

ESO VLT
VLT

ESO Vista Telescope
VISTA

ESO NTT
NTT

ESO VLT Survey telescope
VLT Survey Telescope

ALMA Array
ALMA

ESO E-ELT
E-ELT

ESO APEX
Atacama Pathfinder Experiment (APEX) Telescope

Leave a comment