From Sky and Telescope: “Why [Some] Galaxies Have Spiral Arms”

SKY&Telescope bloc

Sky & Telescope

August 29, 2016
Camille M. Carlisle

1
The galaxy M101 is a “grand design” spiral (meaning it’s dominated by prominent, well-organized arms) of type Sc. Of its estimated trillion stars, many thousands of its brightest supergiants are resolved by Hubble. NASA / ESA / K. Kuntz (JHU) / F. Bresolin (Univ. of Hawaii) / J. Trauger (JPL) / J. Mould (NOAO) / Y.-H. Chu (Univ. of Illinois, Urbana) / STScI

Arguably the prettiest objects in space are spiral galaxies. Young, bright stars trace the arms of these graceful whorls, and dark dust lanes act like galactic eyeliner to dramatically shade them.

In principle it’s easy to make a spiral arm. For various reasons, stuff in the disk sometimes clumps together, but the clump won’t stay a clump for long: stars and clouds near the galactic center circle the galaxy faster than the material farther out does, so over time the clump gets stretched into a spiral.

However, by this reasoning, the arm should quickly wrap itself around the galaxy’s center, destroying the spiral. That generally doesn’t happen. Thus for at least half a century, astronomers have debated why these patterns persist. Maybe, many have suggested, stars don’t actually create the pattern — instead, they’re just passing through it. The arms instead would arise thanks to what are called density waves. Now, observations published in the August 10th Astrophysical Journal Letters provide long-looked-for evidence that these waves do exist.

Yield to Oncoming Stars

If you’ve ever been in a slowdown on the highway, you’ve experienced a density wave. Cars whizzing down the road encounter a region where, for whatever reason, they have to decelerate. Once they’ve passed it, they speed up again. Yet even though cars are successfully passing through the jam, the slow stretch persists and keeps propagating along the highway.

The same thing happens (we think) in spiral galaxies. Even as a clump in the disk stretches into a spiral, all the stars and clouds keep moving through that arm, just as cars continue to pass through a highway choke point. Essentially, clouds and stars slow down and speed up again in a chain reaction — a density wave — that moves through the galaxy.

2
This diagram shows the authors’ scenario for how density waves create spiral arms. The green dashed line is the co-rotation radius, where the density wave (brownish curve, labeled “stellar arm”) and the stars and gas in the galactic disk travel at the same speed. Within that radius, the stars travel faster than the wave; outside the radius, the stars travel slower. In the scenario above, the density wave compresses the gaseous arm (black), which then forms new stars (blue arm) that age as they travel farther from the density wave. Those newborn stars combine with other, old-and-red stars that were already in the disk and were squeezed closer together by the wave (red). Because arms wind up with time, a galaxy’s arms will look tighter or looser depending on which population of stars astronomers observe. Hamed Pour-Imani et al. / Astrophysical Journal Letters 827:L2, 2016 August 10. © AAS

The reason we can see this spiral pattern is because as it passes through the galaxy the density wave compresses gas clouds, triggering star formation. The youngest, brightest stars will thus be nearest the wave and trace out an arm. As stars move out of the wave and spread out across the disk they will age and these biggest, brightest stars will die off, preventing the arm from totally winding up.

But that doesn’t mean there’s no winding. An important prediction comes out of this scenario: how tightly wound a spiral’s arms appear depends on which population of stars you observe. As time goes on the stars get farther from the wave, and — because the inner stars move faster and the outer stars move slower — their orbital motions do wind the arm they’re tracing, tightening the spiral over time.

But because the hot, bluish, live-fast-die-young ones kick the bucket soon after they encounter the density wave, they’ll only trace loosely wound arms. Conversely the older, redder stars will trace more tightly wound arms. So if astronomers look at a galaxy in wavelengths that pick up young stars, they’ll see a more relaxed spiral than if they look in wavelengths that pick up old stars.

Density Waves Detected

Until now, astronomers hadn’t conclusively seen this effect. But the new study by Hamed Pour-Imani (University of Arkansas) and colleagues is convincing proof in its favor. The team compiled archival images of 28 spiral galaxies in far-infrared, near-infrared, optical, and ultraviolet wavelengths. The far-infrared and ultraviolet wavelengths pick up star-forming regions, while optical and near-infrared probe older stars.

The team checked its results three ways and sure enough, it found exactly what’s predicted: arms traced by older stars hug the galactic centers more tightly than those traced by star-forming regions. The result is a neat confirmation that density waves exist.

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

Sky & Telescope magazine, founded in 1941 by Charles A. Federer Jr. and Helen Spence Federer, has the largest, most experienced staff of any astronomy magazine in the world. Its editors are virtually all amateur or professional astronomers, and every one has built a telescope, written a book, done original research, developed a new product, or otherwise distinguished him or herself.

Sky & Telescope magazine, now in its eighth decade, came about because of some happy accidents. Its earliest known ancestor was a four-page bulletin called The Amateur Astronomer, which was begun in 1929 by the Amateur Astronomers Association in New York City. Then, in 1935, the American Museum of Natural History opened its Hayden Planetarium and began to issue a monthly bulletin that became a full-size magazine called The Sky within a year. Under the editorship of Hans Christian Adamson, The Sky featured large illustrations and articles from astronomers all over the globe. It immediately absorbed The Amateur Astronomer.

Despite initial success, by 1939 the planetarium found itself unable to continue financial support of The Sky. Charles A. Federer, who would become the dominant force behind Sky & Telescope, was then working as a lecturer at the planetarium. He was asked to take over publishing The Sky. Federer agreed and started an independent publishing corporation in New York.

“Our first issue came out in January 1940,” he noted. “We dropped from 32 to 24 pages, used cheaper quality paper…but editorially we further defined the departments and tried to squeeze as much information as possible between the covers.” Federer was The Sky’s editor, and his wife, Helen, served as managing editor. In that January 1940 issue, they stated their goal: “We shall try to make the magazine meet the needs of amateur astronomy, so that amateur astronomers will come to regard it as essential to their pursuit, and professionals to consider it a worthwhile medium in which to bring their work before the public.”