From JHU: “Johns Hopkins launches first-known multidisciplinary Zika virus center in the world”

Johns Hopkins
Johns Hopkins University

Kim Polyniak

Center team will provide comprehensive care to patients with mosquito-borne virus, conduct research

As the number of patients with Zika virus grows worldwide, Johns Hopkins Medicine today announced the opening of the new Johns Hopkins Wilmer Zika Center dedicated primarily to caring for patients with the mosquito-borne and sexually transmitted virus.

The center is composed of providers and staff from departments and divisions at Johns Hopkins Medicine and the Bloomberg School of Public Health, including epidemiology, infectious diseases, maternal-fetal medicine, ophthalmology, orthopaedics, pediatrics, physiotherapy, psychiatry, and social work. Medical experts from Brazil, a country greatly affected by Zika virus, are also members of the center.

“Patients will no longer be required to travel to multiple centers for care relating to Zika virus,” says William May, associate professor of ophthalmology at the Johns Hopkins Wilmer Eye Institute. “Physicians and staff members in various departments at Johns Hopkins will be available to provide comprehensive care to patients within one institution.”

Infections from Zika virus have reached epidemic proportions in parts of the world in the past year, with Brazil being the epicenter of the outbreak. Several non-travel-related cases have recently been reported in Florida, suggesting local transmission there. According to the World Health Organization, Zika may be responsible for thousands of babies being born with microcephaly, a severe birth defect that affects the brain, and for some adults experiencing neurological symptoms.

The Wilmer Eye Institute led the development of what is believed to be the first such comprehensive and multidisciplinary Zika center. In addition to microcephaly, Zika is also reported to cause eye abnormalities in up to more than half of babies infected with the illness, according to a recent study in Brazil. The Wilmer Eye Institute is able to diagnose and, in many cases, treat eye concerns associated with Zika virus—including cataracts and other vision issues—with specialized technology.

Adult and pediatric patients worldwide can be referred to the center by outside physicians or through Johns Hopkins departments and divisions, including emergency medicine and maternal-fetal medicine. Patients can also call the Wilmer Eye Institute to schedule an appointment. A case manager will work with patients to develop a care plan and identify specialists with whom the patient should follow up.

“When a patient, particularly a pregnant woman, contracts Zika virus, it can be a tremendously alarming experience,” says Jeanne Sheffield, director of maternal-fetal medicine for the Johns Hopkins Hospital. “Our team will be able to coordinate our efforts to determine patients’ needs and provide the best care possible.”

The Zika center team will also be involved in research to learn more about the virus, about which many unknowns still exist.

“Our No. 1 priority will be focused on our patients,” May says, “but our hope is that our care will also lead to many new developments in the effort to fight this potentially devastating disease.”

See the full article here .


There is a new project at World Community Grid [WCG] called OpenZika.
Zika depiction. Image copyright John Liebler,
Rutgers Open Zika

WCG runs on your home computer or tablet on software from Berkeley Open Infrastructure for Network Computing [BOINC]. Many other scientific projects run on BOINC software.Visit WCG or BOINC, download and install the software, then at WCG attach to the OpenZika project. You will be joining tens of thousands of other “crunchers” processing computational data and saving the scientists literally thousands of hours of work at no real cost to you.

This project is directed by Dr. Alexander Perryman a senior researcher in the Freundlich lab, with extensive training in developing and applying computational methods in drug discovery and in the biochemical mechanisms of multi-drug-resistance in infectious diseases. He is a member of the Center for Emerging & Re-emerging Pathogens, in the Department of Pharmacology, Physiology, and Neuroscience, at the Rutgers University, New Jersey Medical School. Previously, he was a Research Associate in Prof. Arthur J. Olson’s lab at The Scripps Research Institute (TSRI), where he ran the day-to-day operations of the FightAIDS@Home project, the largest computational drug discovery project devoted to HIV/AIDS, which also runs on WCG. While in the Olson lab, he also designed, led, and ran the largest computational drug discovery project ever performed against malaria, the GO Fight Against Malaria project, also on WCG.

Rutgers smaller

WCG Logo New

BOINC WallPaper

Please help promote STEM in your local schools.

Stem Education Coalition

Johns Hopkins Campus

The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.