From JHU: “Can one cosmic enigma help solve another? Johns Hopkins researchers think so”

Johns Hopkins
Johns Hopkins University

8.24.16
Arthur Hirsch

1
Image credit: VectaRay

2
A massive cluster of yellowish galaxies, seemingly caught in a red and blue spider web of eerily distorted background galaxies, makes for a spellbinding picture from the new Advanced Camera for Surveys aboard NASA’s Hubble Space Telescope. To make this unprecedented image of the cosmos, Hubble peered straight through the center of one of the most massive galaxy clusters known, called Abell 1689. The gravity of the cluster’s trillion stars — plus dark matter — acts as a 2-million-light-year-wide lens in space. This gravitational lens bends and magnifies the light of the galaxies located far behind it. Some of the faintest objects in the picture are probably over 13 billion light-years away (redshift value 6). Strong gravitational lensing as observed by the Hubble Space Telescope in Abell 1689 indicates the presence of dark matter. Credit: NASA, N. Benitez (JHU), T. Broadhurst (Racah Institute of Physics/The Hebrew University), H. Ford (JHU), M. Clampin (STScI),G. Hartig (STScI), G. Illingworth (UCO/Lick Observatory), the ACS Science Team and ESA. phys.org.

Astrophysicists from Johns Hopkins University have proposed a clever new way of shedding light on the mysterious dark matter believed to make up most of the universe. The irony is they want to try to pin down the nature of this unexplained phenomenon by using another obscure cosmic emanation known as “fast radio bursts.”

In a paper published today in Physical Review Letters, the team of astrophysicists argues that these extremely bright and brief flashes of radio-frequency radiation can provide clues about whether certain black holes are dark matter.

Julian Muñoz, a Johns Hopkins graduate student and the paper’s lead author, said fast radio bursts, or FRBs, provide a direct and specific way of detecting black holes of a specific mass, which are the suspect dark matter.

FRB Fast Radio Bursts from NAOJ Subaru
FRB Fast Radio Bursts from NAOJ Subaru, Mauna Key, Hawaii, USA

Muñoz wrote the paper along with Ely D. Kovetz, a post-doctoral fellow; Marc Kamionkowski, a professor in the Department of Physics and Astronomy; and Liang Dai, who completed his doctorate in astrophysics at Johns Hopkins last year. Dai is now a NASA Einstein Postdoctoral Fellow at the Institute for Advanced Study in Princeton, New Jersey.

The paper builds on a hypothesis offered in a paper published this spring by Muñoz, Kovetz, and Kamionkowski, along with five Johns Hopkins colleagues. Also published in Physical Review Letters, that research made a speculative case that the collision of black holes detected early in the year by the Laser Interferometer Gravitational-Wave Observatory, or LIGO, was actually dark matter, a substance that makes up 85 percent of the mass of the universe.

Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib
Credit: MPI for Gravitational Physics/W.Benger-Zib
LSC LIGO Scientific Collaboration
Caltech/MIT Advanced aLigo Hanford, WA, USA installation
Caltech/MIT Advanced aLigo Hanford, WA, USA installation
Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA
Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

The earlier paper made what Kamionkowski called a “plausibility argument” that LIGO found dark matter. The study took as a point of departure the fact that the objects detected by LIGO fit within the predicted range of mass of so-called “primordial” black holes. Unlike black holes that formed from imploded stars, primordial black holes are believed to have formed from the collapse of large expanses of gas during the birth of the universe.

The existence of primordial black holes has not been established with certainty, but they have been suggested before as a possible solution to the riddle of dark matter. With so little evidence of them to examine, the hypothesis had not gained a large following among scientists.

The earlier paper made what Kamionkowski called a “plausibility argument” that LIGO found dark matter. The study took as a point of departure the fact that the objects detected by LIGO fit within the predicted range of mass of so-called “primordial” black holes. Unlike black holes that formed from imploded stars, primordial black holes are believed to have formed from the collapse of large expanses of gas during the birth of the universe.

The LIGO findings, however, raised the prospect anew, especially as the objects detected in that experiment conform to the mass predicted for dark matter.

The Johns Hopkins team calculated how often these primordial black holes would form binary pairs, and eventually collide. Taking into account the size and elongated shape believed to characterize primordial black hole binary orbits, the team came up with a collision rate that conforms to the LIGO findings.

Key to the argument is that the black holes that LIGO detected fall within a range of 29 to 36 solar masses, meaning they are that many times greater than the mass of the sun. The new paper considers the question of how to test the hypothesis that dark matter consists of black holes of roughly 30 solar masses.

That’s where the fast radio bursts come in. First observed only a few years ago, these flashes of radio frequency radiation emit intense energy, but last only fractions of a second. Their origins are unknown but are believed to lie in galaxies outside the Milky Way.

If the speculation about their origins is true, Kamionkowski said, the radio waves would travel great distances before they’re observed on Earth, perhaps passing a black hole. According to Einstein’s theory of general relativity, the ray would be deflected when it passes a black hole. If it passes close enough, it could be split into two rays shooting off in the same direction—creating two images from one source.

The new study shows that if the black hole has 30 times the mass of the Sun, the two images will arrive a few milliseconds apart. If 30-solar-mass black holes make up the dark matter, there is a chance that any given fast radio burst will be deflected in this way and followed in a few milliseconds by an echo.

“The echoing of FRBs is a very direct probe of dark matter,” Muñoz said. “While gravitational waves might ‘indicate’ that dark matter is made of black holes, there are other ways to produce very-massive black holes with regular astrophysics, so it would be hard to convince oneself that we are detecting dark matter. However, gravitational lensing of fast radio bursts has a very unique signature, with no other astrophysical phenomenon that could reproduce it.”

Kaimonkowski said that while the probability for any such FRB echo is small, “it is expected that several of the thousands of FRBs to be detected in the next few years will have such echoes … if black holes make up the dark matter.”

So far, only about 20 fast radio bursts have been detected and recorded since 2001. The very sensitive instruments needed to detect them can look at only very small slices of the sky at a time, limiting the rate at which the bursts can be found. A new telescope expected to go into operation this year that seems particularly promising for spotting radio bursts is the Canadian Hydrogen Intensity Mapping Experiment. The joint project of the University of British Columbia, McGill University, the University of Toronto, and the Dominion Radio Astrophysical Observatory stands in British Columbia.

“Once the thing is working up to their planned specifications, they should collect enough FRBs to begin the tests we propose,” said Kamionkowski, estimating results could be available in three to five years.

See the full article here .

Please help promote STEM in your local schools.
STEM Icon

Stem Education Coalition

Johns Hopkins Campus

The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.