From particlebites: “Jets: More than Riff, Tony, and a rumble”

particlebites bloc

particlebites

July 26, 2016 [Just today in social media.]
Reggie Bain

Ubiquitous in the LHC’s ultra-high energy collisions are collimated sprays of particles called jets. The study of jet physics is a rapidly growing field where experimentalists and theorists work together to unravel the complex geometry of the final state particles at LHC experiments. If you’re totally new to the idea of jets…this bite from July 18th, 2016 by Julia Gonski is a nice experimental introduction to the importance of jets. In this bite, we’ll look at the basic ideas of jet physics from a more theoretical perspective. Let’s address a few basic questions:

1. What is a jet? Jets are highly collimated collections of particles that are frequently observed in detectors. In visualizations of collisions in the ATLAS detector, one can often identify jets by eye.

1
A nicely colored visualization of a multi-jet event in the ATLAS detector. Reason #172 that I’m not an experimentalist…actually sifting out useful information from the detector (or even making a graphic like this) is insanely hard.

Jets are formed in the final state of a collision when a particle showers off radiation in such a way as to form a focused cone of particles. The most commonly studied jets are formed by quarks and gluons that fragment into hadrons like pions, kaons, and sometimes more exotic particles like the $latex J/Ψ, Υ, χc and many others. This process is often referred to as hadronization.

2. Why do jets exist? Jets are a fundamental prediction of Quantum Field Theories like Quantum Chromodynamics (QCD). One common process studied in field theory textbooks is electron–positron annihilation into a pair of quarks, e+e– → q q. In order to calculate the cross-section of this process, it turns out that one has to consider the possibility that additional gluons are produced along with the qq. Since no detector has infinite resolution, it’s always possible that there are gluons that go unobserved by your detector. This could be because they are incredibly soft (low energy) or because they travel almost exactly collinear to the q or q itself. In this region of momenta, the cross-section gets very large and the process favors the creation of this extra radiation. Since these gluons carry color/anti-color, they begin to hadronize and decay so as to become stable, colorless states. When the q, q have high momenta, the zoo of particles that are formed from the hadronization all have momenta that are clustered around the direction of the original q,q and form a cone shape in the detector…thus a jet is born! The details of exactly how hadronization works is where theory can get a little hazy. At the energy and distance scales where quarks/gluons start to hadronize, perturbation theory breaks down making many of our usual calculational tools useless. This, of course, makes the realm of hadronization—often referred to as parton fragmentation in the literature—a hot topic in QCD research.

3. How do we measure/study jets? Now comes the tricky part. As experimentalists will tell you, actually measuring jets can a messy business. By taking the signatures of the final state particles in an event (i.e. a collision), one can reconstruct a jet using a jet algorithm. One of the first concepts of such jet definitions was introduced by Geroge Sterman and Steven Weinberg in 1977. There they defined a jet using two parameters θ, E. These restricted the angle and energy of particles that are in or out of a jet. Today, we have a variety of jet algorithms that fall into two categories:

Cone Algorithms — These algorithms identify stable cones of a given angular size. These cones are defined in such a way that if one or two nearby particles are added to or removed from the jet cone, that it won’t drastically change the cone location and energy
Recombination Algorithms — These look pairwise at the 4-momenta of all particles in an event and combine them, according to a certain distance metric (there’s a different one for each algorithm), in such a way as to be left with distinct, well-separated jets.

2
Figure 2: From Cacciari and Salam’s original paper on the “Anti-kT” jet algorithm (See arXiv:0802.1189). The picture shows the application of 4 different jet algorithms: the kT, Cambridge/Aachen, Seedless-Infrared-Safe Cone, and anti-kT algorithms to a single set of final state particles in an event. You can see how each algorithm reconstructs a slightly different jet structure. These are among the most commonly used clustering algorithms on the market (the anti-kT being, at least in my experience, the most popular)

4. Why are jets important? On the frontier of high energy particle physics, CERN leads the world’s charge in the search for new physics. From deepening our understanding of the Higgs to observing never before seen particles, projects like ATLAS,

3
An illustration of an interesting type of jet substructure observable called “N-subjettiness” from the original paper by Jesse Thaler and Ken van Tilburg (see arXiv:1011.2268). N-subjettiness aims to study how momenta within a jet are distributed by dividing them up into n sub-jets. The diagram on the left shows an example of 2-subjettiness where a jet contains two sub-jets. The diagram on the right shows a jet with 0 sub-jets.

CMS, and LHCb promise to uncover interesting physics for years to come. As it turns out, a large amount of Standard Model background to these new physics discoveries comes in the form of jets. Understanding the origin and workings of these jets can thus help us in the search for physics beyond the Standard Model.

Additionally, there are a number of interesting questions that remain about the Standard Model itself. From studying the production of heavy hadron production/decay in pp and heavy-ion collisions to providing precision measurements of the strong coupling, jets physics has a wide range of applicability and relevance to Standard Model problems. In recent years, the physics of jet substructure, which studies the distributions of particle momenta within a jet, has also seen increased interest. By studying the geometry of jets, a number of clever observables have been developed that can help us understand what particles they come from and how they are formed. Jet substructure studies will be the subject of many future bites!

Going forward…With any luck, this should serve as a brief outline to the uninitiated on the basics of jet physics. In a world increasingly filled with bigger, faster, and stronger colliders, jets will continue to play a major role in particle phenomenology. In upcoming bites, I’ll discuss the wealth of new and exciting results coming from jet physics research. We’ll examine questions like:

How do theoretical physicists tackle problems in jet physics?
How does the process of hadronization/fragmentation of quarks and gluons really work?
Can jets be used to answer long outstanding problems in the Standard Model?

I’ll also bite about how physicists use theoretical smart bombs called “effective field theories” to approach these often nasty theoretical calculations. But more on that later…

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

What is ParticleBites?

ParticleBites is an online particle physics journal club written by graduate students and postdocs. Each post presents an interesting paper in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.

The papers are accessible on the arXiv preprint server. Most of our posts are based on papers from hep-ph (high energy phenomenology) and hep-ex (high energy experiment).

Why read ParticleBites?

Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.

Our goal is to solve this problem, one paper at a time. With each brief ParticleBite, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in particle physics.

Who writes ParticleBites?

ParticleBites is written and edited by graduate students and postdocs working in high energy physics. Feel free to contact us if you’re interested in applying to write for ParticleBites.

ParticleBites was founded in 2013 by Flip Tanedo following the Communicating Science (ComSciCon) 2013 workshop.

2
Flip Tanedo UCI Chancellor’s ADVANCE postdoctoral scholar in theoretical physics. As of July 2016, I will be an assistant professor of physics at the University of California, Riverside

It is now organized and directed by Flip and Julia Gonski, with ongoing guidance from Nathan Sanders.