From CERN: “How to help CERN to run more simulations”

Cern New Bloc

Cern New Particle Event

CERN New Masthead

CERN

16 May 2016
by The LHC@home team

With LHC@Home you can actively contribute to the computing capacity of the Laboratory!

LHC Sixtrack

You may think that CERN’s large Data Centre and the Worldwide LHC Computing Grid have enough computing capacity for all the Laboratory’s users. However, given the massive amount of data coming from LHC experiments and other sources, additional computing resources are always needed, notably for simulations of physics events, or accelerator and detector upgrades.

This is an area where you can help, by installing BOINC and running simulations from LHC@home on your office PC or laptop. These background simulations will not disturb your work, as BOINC can be configured to automatically stop computing when your PC is in use.

BOINC WallPaper

BOINCLarge

As mentioned in earlier editions of the Bulletin (see here and here), contributions from LHC@home volunteers have played a major role in LHC beam simulation studies.

LHC@Home Classic Users 133,627 Hosts (computers) 359,237 Teams 5,079 Countries 205 Total BOINC credit 4,797,971,717
Last day 205,687
(Statistics from BOINCStats)

The computing capacity they made available corresponds to about half the capacity of the CERN batch system! Thanks to this precious contribution, detailed studies of subtle effects related with non-linear beam dynamics have been performed using the SixTrack code. This proved extremely useful not only for the LHC, but also for its upgrade, the HL-LHC.

More recently, thanks to virtualisation, the use of LHC@home has been expanded to other applications. Full physics simulations are run in a small CernVM virtual machine on all types of volunteer computers. Monte-Carlo simulations for theorists were first included in a project called Test4Theory. Results are submitted to a database called MCPLots, based in the Theory department at CERN. Since 2011, about 2.7 trillion events have been simulated.

Following this success, ATLAS became the first experiment to join, and the number of volunteers engaged in ATLAS physics events simulation has been steadily ramping up for the last 18 months. The production rate is now equivalent to that of a large WLCG Tier 2 site! These events are fully integrated into the experiment data management system and are already being used for the physics analysis of Run 2. Now applications for the other LHC experiments are also being tested under LHC@home.

We encourage you to help to produce more results. It is really easy to join! On a standard CERN NICE PC, you can install BOINC with CMF, and then connect to LHC@home as indicated on the LHC@home web-site and in the CMF instructions. If you use a Macintosh or Linux desktop, please refer to the instructions for your platform on the website, which also includes a video tutorial.

Help our accelerator and research community and join LHC@home!

[This subject is near and dear to my heart. For about six years I was a “cruncher”. I worked on Six Track and Test4Theory for CERN. In total, all projects I amassed 37,000,000 credits before I had to quit. I still believe in Public Distributed Computing. I support BOINC and World Community Grid on this blog when something is published.]

See the full article here.

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

Meet CERN in a variety of places:

Cern Courier

THE FOUR MAJOR PROJECT COLLABORATIONS

ATLAS
CERN ATLAS New

ALICE
CERN ALICE New

CMS
CERN CMS New

LHCb
CERN LHCb New II

LHC

CERN LHC Map
CERN LHC Grand Tunnel

CERN LHC particles

Quantum Diaries