From astrobites: “The Multiple Identities of ω Centauri”

Astrobites bloc

Astrobites

Mar 1, 2016
Ingrid Pelisoli

Title: The mosaic multiple stellar populations in ω Centauri: the Horizontal Branch and the Main Sequence

First author’s institution: Sapienza Universit di Roma, Osservatorio Astronomico di Roma

Status: accepted by MNRAS

The Milky Way, our lovely home galaxy, is not a lone rider in the Universe. Besides its many companions in the Local Group, it is also surrounded by star clusters, which are clumps of stars smaller than galaxies.

Local Grp II
The Local Group of galaxies. The Milky Way and Andromeda are the most massive galaxies by far.

Star clusters can be distinguished as open clusters and globular clusters. The former are often young and contain fewer than a few hundred members, while the latter are usually old and composed by thousands of stars. It was believed that star clusters formed all their stars roughly at the same time and from the same gas cloud. They would then be represented by a “single stellar population”, with a single age and a single initial composition. However, as our observational techniques improved, it became clear that the story is not so simple: many clusters turned out to show multiple stellar populations. Among those, the most prominent is the globular cluster Omega Centauri.

1
The globular cluster Omega Centauri — with as many as ten million stars — is seen in all its splendour in this image captured with the WFI camera from ESO’s La Silla Observatory.

ESO WFI LaSilla
ESO/WFI

The image shows only the central part of the cluster — about the size of the full moon on the sky (half a degree). North is up, East is to the left. This colour image is a composite of B, V and I filtered images. Note that because WFI is equipped with a mosaic detector, there are two small gaps in the image which were filled with lower quality data from the Digitized Sky Survey.
Date 2008
Source http://www.eso.org/public/outreach/press-rel/pr-2008/phot-44-08.html
Author ESO

What makes Omega Centauri so special?

First of all, it is huge. It is at least twice as massive as 47 Tucanae, the second largest globular cluster. It contains approximately 10 million stars and has a total mass of around 4 million solar masses. It is so big that some astronomers suggest it is not actually a cluster, but the nucleus of a disrupted dwarf galaxy. Secondly, its color magnitude diagram (CMD), is the observational analog of the famous Hertzsprung–Russell diagram.

2
Hertzsprung-Russell diagram. A plot of luminosity (absolute magnitude) against the colour of the stars ranging from the high-temperature blue-white stars on the left side of the diagram to the low temperature red stars on the right side. “This diagram below is a plot of 22000 stars from the Hipparcos Catalogue together with 1000 low-luminosity stars (red and white dwarfs) from the Gliese Catalogue of Nearby Stars. The ordinary hydrogen-burning dwarf stars like the Sun are found in a band running from top-left to bottom-right called the Main Sequence. Giant stars form their own clump on the upper-right side of the diagram. Above them lie the much rarer bright giants and supergiants. At the lower-left is the band of white dwarfs – these are the dead cores of old stars which have no internal energy source and over billions of years slowly cool down towards the bottom-right of the diagram.” Converted to png and compressed with pngcrush.
Source The Hertzsprung Russell Diagram
Author Richard Powell

And what does that mean? The turnoff is essentially where the main sequence of a cluster ends: any star that would appear above the turnoff in the main sequence has already exhausted the hydrogen fuel in its core and has become a red giant. So as we more or less know how long a star stays on the main sequence based on its mass, the position of the turnoff gives us an estimate of a cluster’s age. Thus multiple turnoffs would mean multiple ages. Or would it? The authors of today’s paper show that this may not be so straight-forward.

What did we miss?

One thing that usually gets overlooked when one talks about stellar ages is the metal abundance (remember, metal in astronomy means everything that is not hydrogen or helium), or metallicity [Z] for short. But it is actually quite important. The metal content changes the opacity of a star’s atmosphere, essentially changing its luminosity, or, in other words, the rate at which the star releases its energy. And that of course affects its lifetime, changing the position of the turnoff as a consequence. So, even though multiple turnoffs can mean multiple populations with different ages, it can also mean multiple populations with the same age but different metallicities. To investigate this possibility, the authors of this paper separated Omega Centauri into different populations based on their metallicities and helium content. For that, they relied on results in the literature which used spectroscopic observations to estimate these quantities for stars in different regions of the cluster’s CMD.

Multiple metallicities, one age

Using the properties of each population, the authors simulated the CMD of each single population. Essentially, they assume the stars in it form according to a given mass-distribution (the initial mass function) and use evolutionary models, which depend on both mass and metallicity, to see where each star would lie in the CMD at different ages. Then they sum up the results of all populations, obtaining one simulated CMD for the cluster. This is called population synthesis, and it is often used to study different populations in galaxies.

It turns out that the observations can be very well described by a single age, with a small spread of 0.5 Gyr between the different populations. A similar result was obtained to another cluster, NGC 1651, as featured on this astrobite. This small spread is more consistent with Omega Centauri indeed being a globular cluster, not a galaxy remnant. The spread in metallicity would mean that the cloud which formed Omega Centauri as a cluster had some metallicity gradient, and that would be why it’s not exactly a single population. However, having one solution with single age does not mean that there are no solutions with a large age spread, consistent with a galaxy remnant. And in fact there are. So the authors stressed that they were only trying to answer the question “is it possible to have a small age spread?”. To that the answer is yes, but we still cannot rule out the other possibility. It turns out that different metallicities for each population in a cluster can explain the multiple turnoffs as well as different ages in a galaxy remnant. So the true identity of Omega Centauri remains a mystery.

See the full article here .

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

What do we do?

Astrobites is a daily astrophysical literature journal written by graduate students in astronomy. Our goal is to present one interesting paper per day in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.
Why read Astrobites?

Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.
Our goal is to solve this problem, one paper at a time. In 5 minutes a day reading Astrobites, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in a new area of astronomy.