From EMSL: “A new material for transparent electronics”

EMSL

EMSL

August 17, 2015
No Writer Credit

Specialized crystalline films revealed to be highly conductive and transparent

1
Scanning transmission electron micrograph of a p-Sr0.12La0.88 CrO3/n-SrTiO3(001) heterojunction.

Results: The performance of solar cells, flat panel displays, and other electronics are limited by today’s materials. A new material, created by modifying a transparent insulating oxide, replacing up to 25 percent of the lanthanum ions in the host material with strontium ions, offers considerable promise. The new perovskite film, with the formula SrxLa1-xCrO3, (x up to 0.25), conducts electricity more effectively than the unmodified oxide and yet retains much of the transparency to visible light exhibited by the pure material.

Why It Matters: Materials that are both electrically conductive and optically transparent are needed for more efficient solar cells, light detectors, and several kinds of electronic devices that are by nature transparent to visible light. Of particular importance are new materials that conduct electricity by using missing electrons, otherwise known as “holes.” The new perovskite film falls into this category.

Methods: The development of high-performance transparent conducting oxides (TCOs) is critical to many technologies ranging from flat panel displays to solar cells. Although electron conducting (n-type) TCOs are presently in use in many devices, their hole-conducting (p-type) counterparts have not been commercialized as candidate materials because they exhibit much lower conductivities. Scientists at Pacific Northwest National Laboratory along with collaborators at Binghamton University and the Paul Drude Institute in Berlin show that La1-xSrxCrO3 (LSCO) is a new p-type TCO with considerable potential. The researchers demonstrate that crystalline LSCO films deposited on SrTiO3(001) by molecular beam epitaxy show figures of merit which are highly competitive with best p-type TCOs reported to date, and yet are more stable and structurally compatible with the workhorse materials of oxide electronics, as seen in the image. Being structurally and chemically compatible with other perovskite oxides, perovksite LSCO offers considerable promise in the design of all-perovskite oxide electronics.

See the full article here.

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

EMSL campus

Welcome to EMSL. EMSL is a national scientific user facility that is funded and sponsored by DOE’s Office of Biological & Environmental Research. As a user facility, our scientific capabilities – people, instruments and facilities – are available for use by the global research community. We support BER’s mission to provide innovative solutions to the nation’s environmental and energy production challenges in areas such as atmospheric aerosols, feedstocks, global carbon cycling, biogeochemistry, subsurface science and energy materials.

A deep understanding of molecular-level processes is critical to gaining a predictive, systems-level understanding of the impacts of aerosols and terrestrial systems on climate change; making clean, affordable, abundant energy; and cleaning up our legacy wastes. Visit our Science page to learn how EMSL leads in these areas, through our Science Themes.

Team’s in Our DNA. We approach science differently than many institutions. We believe in – and have proven – the value of drawing together members of the scientific community and assembling the people, resources and facilities to solve problems. It’s in our DNA, since our founder Dr. Wiley’s initial call to create a user facility that would facilitate “synergism between the physical, mathematical, and life sciences.” We integrate experts across disciplines; experiment with theory; and our user program proposal calls with other user facilities.

We proudly provide an enriched, customized experience that allows users to connect with our people and capabilities in an environment where we focus on solving problems. We collaborate with researchers from academia, government labs and industry, and from nearly all 50 states and from other countries.