From ESA: “Chaos on a watery world”

ESASpaceForEuropeBanner
European Space Agency

11/05/2015
No Writer Credit

1

Jupiter’s moon Europa is brimming with water. Although it is thought to be mostly made up of rocky material, the moon is wrapped in a thick layer of water – some frozen to form an icy crust, some potentially pooled in shallow underground lakes or layers of slush, and vast quantities more lurking even deeper still in the form of a giant subsurface ocean.

This false-colour image from NASA’s Galileo spacecraft shows a disrupted part of Europa’s crust known as Conamara Chaos.

NASA Galileo
NASA/Galileo

The long criss-crossing grooves etched into the shattered chunks of ice are a perfect example of “chaos terrain” – a feature seen most prominently in our Solar System on Europa, Mars and Mercury.

Although the exact ways chaos regions form are not completely understood, in the case of Europa scientists have a few ideas. One possibility is fast-moving impactors that smash through the moon’s brittle crust. As a liquid layer lies immediately beneath the crust, the shards are more mobile and can refreeze in different configurations, creating a fractured terrain with young scars carved into the icy plains.

Many chaos regions have small impact craters clustered nearby. In the case of Conamara Chaos, for example, a large 26 km-diameter crater named Pwyll lies 1000 km to the south, and a handful of smaller, 500 m-diameter craters are scattered throughout the region, likely formed by lumps of ice thrown up by the impact that created Pwyll.

1
This enhanced color image of the region surrounding the young impact crater Pwyll on Jupiter’s moon Europa was produced by combining low resolution color data with a higher resolution mosaic of images obtained on December 19, 1996 by the Solid State Imaging (CCD) system aboard NASA’s Galileo spacecraft. This region is on the trailing hemisphere of the satellite, centered at 11 degrees South and 276 degrees West, and is about 1240 kilometers across. North is toward the top of the image, and the sun illuminates the surface from the east.

Another suggestion is that Europa harbours an intricate system of shallow subsurface lakes. Instead of an object slamming into the Jovian moon, a lake system could influence and stress the crust from below to cause the thin ice sheets to fracture and collapse.

This patch of Europa’s crust takes on an iridescent appearance in this false-colour image, which strongly enhances subtle colour differences present in the scene. Areas of blue and white stand out distinctly from areas of rusty orange and bronze. This colouration is thought to be caused by material from Pwyll: when the crater formed it threw up a blanket of fine ice particles that settled over parts of Conamara Chaos, colouring parts of the landscape in dark blue (coarser particles of ice), light blue (smaller particles) and white (very fine particles). The bronze patches are regions of ice that have been stained by minerals from beneath the disrupted crust.

Although astronomers have studied Europa intensively, the only way to confirm the structure and composition of the moon is to probe its shell and interior with a space probe. ESA’s JUpiter ICy moons Explorer (Juice) mission aims to do just that when it arrives in the Jovian system in 2030.

ESA JUICE
ESA/JUICE

Alongside detailed studies of Jupiter itself, Juice will explore and characterise three of the gas giant’s potentially habitable icy moons: Ganymede, Europa and Callisto. The mission is in development, on track for launch in 2022.

North is to the top of the picture and the Sun illuminates the surface from the right side of the frame. The image is centred at 9ºN / 274ºW, and covers an area of some 70 km by 30 km. The image combines data taken by Galileo’s Solid State Imaging system during three orbits through the Jovian system in 1996 and 1997.

See the full article here.

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

ESA50 Logo large