From phys.org: “Giant cosmic tsunami wakes up comatose galaxies”

physdotorg
phys.org

April 24, 2015
Dr Robert Massey

1
A radio image highlighting the shock wave (seen here as the bright arc running from bottom left to top right) in the ‘Sausage’ merging cluster, made using the Giant Metrewave Radio Telescope [GMRT]. The shock wave was generated 1 billion years ago, when the two original clusters collided, and is moving at a very high speed of 9 million kilometres per hour. Credit: Andra Stroe

Giant Metrewave Radio Telescope
GMRT

Galaxies are often found in clusters, with many ‘red and dead’ neighbours that stopped forming stars in the distant past. Now an international team of astronomers, led by Andra Stroe of Leiden Observatory and David Sobral of Leiden and the University of Lisbon, have discovered that these comatose galaxies can sometimes come back to life. If clusters of galaxies merge, a huge shock wave can drive the birth of a new generation of stars – the sleeping galaxies get a new lease of life. The scientists publish their work in the journal Monthly Notices of the Royal Astronomical Society.

Galaxy clusters are like cities, where thousands of galaxies can be packed together, at least in comparison to the empty space around them. Over billions of years, they build up structure in the universe – merging with adjacent clusters, like growing cities absorb nearby towns. When this happens, there is a huge release of energy as the clusters collide. The resulting shock wave is like a tsunami, but until now there was no evidence that the galaxies themselves were affected very much.

Stroe and Sobral observed the merging galaxy cluster CIZA J2242.8+5301, nicknamed the ‘Sausage’, located 2.3 billion light years away in the direction of the constellation of Lacerta, in the northern hemisphere of the sky. They used the Isaac Newton and William Herschel Telescopes on La Palma, and the Subaru, CFHT and Keck Telescopes on Hawaii, and found that far from ‘watching from the back’ the cluster galaxies were transformed by the shock wave, triggering a new wave of star formation.

Isaac Newton 2.5m telescope
Isaac Newton 2.5m telescope interior
Isaac Newton 2.5 meter telescope

ING William Herschel Telescope
ING William Herschel Telescope Interior
William Herschel Telescope

NAOJ Subaru Telescope
NAOJ Subaru Telescope interior
Subaru Telescope

Canada-France-Hawaii Telescope
CFHT Interior
CFHT

Keck Observatory
Keck Observatory Interior
Keck

Stroe comments: “We assumed that the galaxies would be on the sidelines for this act, but it turns out they have a leading role. The comatose galaxies in the Sausage are coming back to life, with stars forming at a tremendous rate. When we first saw this in the data, we simply couldn’t believe what it was telling us.”

The new work implies that the merger of galaxy clusters has a major impact on the formation of stars. “Much like a teaspoon stirring a mug of coffee, the shocks lead to turbulence in the galactic gas. These trigger an avalanche-like collapse, which eventually leads to the formation of very dense, cold gas clouds that are vital for the formation of new stars”, says Stroe

2
A composite image of the ‘Sausage’ merging cluster CIZA J2242.8+5310, made using data from the Subaru and Canada France Hawaii Telescopes (CFHT). The white circles indicate galaxies outside of the cluster, while yellow circles are cluster galaxies, where accelerated star formation is taking place. Green marks regions of radio emission, tracing out shock waves and purple marks the hot gas between the galaxies that emits X-rays. The cluster is one of the most massive in the Universe. Credit: Andra Stroe

Sobral adds: “But star formation at this rate leads to a lot of massive, short-lived stars coming into being, which explode as supernovae a few million years later. The explosions drive huge amounts of gas out of the galaxies and with most of the rest consumed in star formation, the galaxies soon run out of fuel. If you wait long enough, the cluster mergers make the galaxies even more red and dead – they slip back into a coma and have little prospect of a second resurrection.”

Every cluster of galaxies in the nearby Universe has experienced a series of mergers during its lifetime, so they should all have passed through a period of extremely vigorous production of stars. Given that the shocks will only however lead to a brief (in astronomical terms) increase in star formation, astronomers have to be very lucky to catch the cluster at a time in its evolution when the galaxies are still being `lit up’ by the shock.

The next step is to see if the Sausage is unique and that these bursts of star formation need very particular conditions. By studying a much bigger sample of galaxies, the team hope to find out exactly how they happen.

See the full article here.

Please help promote STEM in your local schools.

STEM Icon

Stem Education Coalition

About Phys.org in 100 Words

Phys.org™ (formerly Physorg.com) is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004, Phys.org’s readership has grown steadily to include 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page set-up, RSS/XML feeds, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.