From FNAL- “Frontier Science Result: CDF and DZero Joining forces to test the Higgs boson’s spin and parity”


Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

Thursday, March 12, 2015
Tom Junk

This plot shows the observed and expected upper limits at the 95 percent credibility level on the fraction of exotic boson production for two cases (spin zero with negative parity and spin two with positive parity). A signal scale of one corresponds to the Standard Model.

The Higgs boson caused a lot of excitement when the ATLAS and CMS collaborations announced its discovery in 2012.



CERN LHC Grand Tunnel
CERN LHC particles

Everyone was bursting with questions: How much does it weigh? How is it made? How does it decay? Does it have any spin, and if so, how much? Does it look the same in a mirror or not (the question of “parity”)?

The Standard Model predicts the answers to all of these questions, although some depend on the Higgs boson mass, which ATLAS and CMS have measured precisely.

Standard Model of Particle Physics. The diagram shows the elementary particles of the Standard Model (the Higgs boson, the three generations of quarks and leptons, and the gauge bosons), including their names, masses, spins, charges, chiralities, and interactions with the strong, weak and electromagnetic forces. It also depicts the crucial role of the Higgs boson in electroweak symmetry breaking, and shows how the properties of the various particles differ in the (high-energy) symmetric phase (top) and the (low-energy) broken-symmetry phase (bottom).

So far, the new particle observed at the LHC is consistent with all of the Standard Model’s predictions. In particular, ATLAS and CMS’s measurements of the spin and parity allowed them to confidently identify the new particle as a Higgs boson.

The Tevatron experiments, CDF and DZero, also found evidence for a Higgs boson in 2012, looking at events in which two bottom-flavored jets recoiled from a vector boson — either a Z or a W.




All the same questions come up, as some models predict that one may observe a mixture of Higgs particles at the Tevatron different from what was observed at the LHC due to the different mixtures of production and decay modes that provide the most sensitivity.

At the Tevatron, the Higgs boson’s properties were found to be consistent with those predicted for the Standard Model Higgs boson. Theorists provided a clever way to test some models of the Higgs boson’s spin and parity using Tevatron data: Higgs bosons with exotic spin and parity would be produced with more energy than the Standard Model version. CDF and DZero looked at the energies and angles of particles produced in Higgs boson events to check. But most events at the Tevatron are non-Higgs-boson background events, so a lot of hard work went in to test the models.

Both DZero and CDF modified their Higgs boson analyses to search for the new particles, if they are present in addition to the Standard Model Higgs boson, or if they replace it entirely. Neither experiment found evidence for the exotic states, and the data prefer the Standard Model interpretation.

But a much stronger statement can be made when CDF and DZero join forces and combine their results, using the same techniques used in the Standard Model Higgs search combinations. The signal strength of exotic Higgs bosons in the JP=0- and 2+ states is no more than 0.36 times that predicted for the Standard Model Higgs boson. Given a choice between the Standard Model Higgs boson, which has JP=0+, and one of the two exotic models replacing it with the same signal strength, the Tevatron data disfavors the exotic models with a significance of 5.0 standard deviations for 0- and 4.9 standard deviations for 2+.

The figure above shows limits on the fraction of exotic Higgs boson production as functions of the total signal rate, assuming that the Higgs signal is a mixture of the Standard Model Higgs boson and one of the exotic kinds. The particle for which the Tevatron experiments reported evidence in 2012 is consistent with having the spin and parity predicted by the Standard Model.

—Tom Junk

See the full article here.

Please help promote STEM in your local schools.


Stem Education Coalition

Fermilab Campus

Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
collaborate at Fermilab on experiments at the frontiers of discovery.