From WCG: “Using grid computing to understand an underwater world”

New WCG Logo

SustainableWater screensaver

28 Jan 2015
By: Gerard P. Learmonth Sr., M.B.A., M.S., Ph.D.
University of Virginia

The Computing for Sustainable Water (CFSW) project focused on the Chesapeake Bay watershed in the United States. This is the largest watershed in the US and covers all or part of six states (Virginia, West Virginia, Maryland, Delaware, Pennsylvania, and New York) and Washington, D.C., the nation’s capital. The Bay has been under environmental pressure for many years. Previous efforts to address the problem have been unsuccessful. As a result, the size of the Bay’s anoxic region (dead zone) continues to affect the native blue crab (callinectes sapidus) population.

Callinectes sapidus – the blue crab

he problem is largely a result of nutrient flow (nitrogen and phosphorous) into the Bay that occurs due to agricultural, industrial, and land development activities. Federal, state, and local agencies attempt to control nutrient flow through a set of incentives known as Best Management Practices (BMPs). Entities adopting BMPs typically receive payments. Each BMP is believed to be helpful in some way for controlling nutrient flow. However, the effectiveness of the various BMPs has not been studied on an appropriately large scale. Indeed, there is no clear scientific evidence for the effectiveness of some BMPs that have already been widely adopted.

The Computing for Sustainable Water project conducted a set of large-scale simulation experiments of the impact of BMPs on nutrient flow into the Chesapeake Bay and the resulting environmental health of the Bay. Table 1 lists the 23 BMPs tested in this project. Initially, a simulation run with no BMPs was produced as a baseline case. Then each individual BMP was run separately and compared with the baseline. Table 2 shows the results of these statistical comparisons.

Table 1. Best Management Practices employed in the Chesapeake Bay watershed

Table 2. Statistical results comparing each BMP to a baseline (no-BMPs) simulation experiment.

Student’s t-tests of individual BMPs compared to base case of no BMPs * = significant at α = 0.10; ** = significant at α = 0.05; *** = significant at α = 0.01
For more information about t-statistic, click here. For more information about p-value, click here.

These results identify several BMPs that are effective in reducing the corresponding nitrogen and phosphorous loads entering the Chesapeake Bay. In particular, BMPs 4, 7, and 23 are highly effective. These results are very informative for policymakers not only in the Chesapeake Bay watershed but globally as well, because many regions of the world experience similar problems and employ similar BMPs.

In all, World Community Grid members facilitated over 19.1 million experiments. These include various combinations of BMPs to discover the possible effectiveness of combinations of BMPs. The analysis of these experiments continues for combinations of BMPs.

We would like to once again express our gratitude to the World Community Grid community. A project of this size and scope simply would not have been possible without your help.

See the full article here.

Please help promote STEM in your local schools.

Stem Education Coalition

World Community Grid (WCG) brings people together from across the globe to create the largest non-profit computing grid benefiting humanity. It does this by pooling surplus computer processing power. We believe that innovation combined with visionary scientific research and large-scale volunteerism can help make the planet smarter. Our success depends on like-minded individuals – like you.”

WCG projects run on BOINC software from UC Berkeley.

BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing.


“Download and install secure, free software that captures your computer’s spare power when it is on, but idle. You will then be a World Community Grid volunteer. It’s that simple!” You can download the software at either WCG or BOINC.

Please visit the project pages-
Outsmart Ebola together

Outsmart Ebola Together

Mapping Cancer Markers

Uncovering Genome Mysteries
Uncovering Genome Mysteries

Say No to Schistosoma

GO Fight Against Malaria

Drug Search for Leishmaniasis

Computing for Clean Water

The Clean Energy Project

Discovering Dengue Drugs – Together

Help Cure Muscular Dystrophy

Help Fight Childhood Cancer

Help Conquer Cancer

Human Proteome Folding


Computing for Sustainable Water