From “Eris: The Dwarf Planet That is Pluto’s Twin”

space-dot-com logo

January 27, 2015
Nola Taylor Redd


Eris with moon Dysmonia

In addition to eight full-size planets, the solar system is home to a number of smaller “dwarf planets.” One of these, Eris, is almost the exact same size as the most well-known member of the collection, Pluto.


When Eris was first discovered in 2005, it was thought to be significantly larger than Pluto. Originally, it was submitted as the tenth planet in the solar system. Ultimately, however, Eris’ discovery was a big reason astronomers demoted Pluto to dwarf planet status in 2006. That decision remains controversial to this day, making Eris’ name fitting.

“Eris is the Greek goddess of discord and strife,” astronomer Mike Brown, a member of the discovery team, said via NASA. “She stirs up jealousy and envy to cause fighting and anger among men. At the wedding of Peleus and Thetis, all the gods were invited with the exception of Eris, and, enraged at her exclusion, she spitefully caused a quarrel among the goddesses that led to the Trojan War.”

Like almost all of the known dwarf planets (with the exception of Ceres), Eris lies in the Kuiper Belt that rings the outer solar system. But Eris is even farther-flung than Pluto, circling our star from about three times farther away. It takes 561 years for the distant dwarf planet to make a single trip around the sun, though it rotates once every 25 hours, making the length of its day very similar to a day on Earth.

Kuiper Belt

Watching Eris

Eris’ distance allowed astronomers to make precise measurements when it passed in front of a dim star in 2010, an event known as an occultation. In addition to measuring its size, researchers were also able to conclude its shape, size and mass.

“It is extraordinary how much we can find out about a small and distant object such as Eris by watching it pass in front of a faint star, using relatively small telescopes,” study lead author Bruno Sicardy, of the Pierre et Marie Curie University and Observatory of Paris, said in a statement. “Five years after the creation of the new class of dwarf planets, we are finally really getting to know one of its founding members.”

The observations helped scientists determine that Eris’ diameter is 1,445 miles (2,326 kilometers), give or take 7 miles (12 km). That makes Eris’ size even more precisely known than Pluto’s. (Pluto is thought to be between 1,429 and 1,491 miles — or 2,300 to 2,400 km — across.)

It also means that Pluto and Eris are, for all intents and purposes, the same size, researchers said.

The researchers concluded that Eris is a spherical body. And, by studying the motion of Eris’ moon Dysnomia, they peg the dwarf planet to be about 27 percent heavier than Pluto, which means it’s considerably denser than Pluto as well.

“This density means that Eris is probably a large rocky body covered in a relatively thin mantle of ice,” said co-author Emmanuel Jehin, of the Institut d’Astrophysique de I’Université de Liège in Belgium.

Eris’ surface was also found to be extremely reflective, bouncing back 96 percent of the light that strikes it. That makes Eris one of the most reflective bodies in the solar system, roughly on par with Saturn’s icy moon Enceladus.

Researchers believe Eris’ surface is probably composed of a nitrogen-rich ice mixed with frozen methane in a layer less than 1 millimeter thick. This ice layer could result from the dwarf planet’s atmosphere condensing as frost onto its surface periodically as it moves away from the sun, they said.

The observations also allow researchers to make another estimate for the surface temperature of Eris. The side of the dwarf planet facing the sun likely gets no warmer than minus 396 degrees Fahrenheit (minus 238 Celsius), while temperatures on the night side would be even lower, researchers said.
Dwarf planet’s companion

Eris is one of the few dwarf planets to boast a moon. Named Dysnomia, after Eris’ daughter the demon goddess of lawlessness, the moon allowed astronomers to make more accurate measures of the planet than would have been otherwise possible, such as measurements of its density.
Just the facts

Semi-major axis of its orbit around the sun: 6.3 billion miles (10.2 billion kilometers)
Perihelion (closest approach to sun): 3.6 billion miles (5.8 billion km)
Aphelion (farthest distance from sun): 9.1 billion miles (14.6 billion km)
Orbital period (length of year): 561.37 Earth years
Orbit eccentricity: 0.434
Orbit inclination: 46.87
Sidereal rotation period (length of day): 25.9 hours, or 1.08 Earth days

See the full article here.

Please help promote STEM in your local schools.


Stem Education Coalition