From Frontier Fields: “How Were the Galaxy Clusters Chosen?”

Frontier Fields

March 28, 2014
Dr. Brandon Lawton

The 12 Frontier Fields will greatly expand upon our knowledge of the earliest galaxies to form in the universe. These images of the distant universe (in space and time), will provide us with a sneak peek at the first billion years of the universe. So how were these fields chosen?

The Frontier Fields program was sketched out by the Frontier Fields team in the earliest phases of a recommendation process. Much can change in the process of going from an initial recommendation to a final program. The final program hinged upon finding the best galaxy clusters to anchor the Frontier Fields program. Team members deliberated between several different galaxy clusters, nominated by both those directly involved in the program and the broader astronomical community, before settling on the final candidates.

Special consideration was given to galaxy clusters that
maximize magnification and fit within Hubble’s view;
were located in “clean” locations on the sky;
were observable by ground-based observatories in the Northern and Southern hemispheres.

The Frontier Fields team, with input from the broader astronomical community, was able to narrow down the galaxy cluster candidates to the six chosen for the program. Although it was not possible to select six clusters that met all of the criteria, most of the clusters satisfied most of the criteria. Let us explore the three criteria in a little bit more depth.

Maximize Magnification

Astronomers focused on massive galaxy clusters as candidates because the gravitational lenses they create are likely to provide the greatest magnification of background galaxies, but there were other considerations as well.

Hubble is observing the Frontier Fields with a visible-light instrument and an infrared-light instrument. The fields of view of these instruments, defined to be the area of the sky they can image in one pointing, are relatively small – a box with sides about 1/15 the width of the full moon. Because of the small fields of view, the galaxy clusters need to be relatively compact so that any magnified background galaxy remains within the fields of view.

The galaxy clusters must also be relatively compact in size. For each of the galaxy clusters, Hubble is also imaging an adjacent parallel field. For the goals of the program, the parallel fields need to contain unobstructed views of the early universe, devoid of the metropolis of galaxies that make up the galaxy clusters. Astronomers lose the magnifying power of the galaxy clusters, but gain simplicity. For the parallel fields, astronomers do not require detailed models of how the light from the distant galaxies are lensed by the foreground clusters.

Clean Locations on the Sky

Below is a map of the sky showing the locations of the six pointings required for Hubble to acquire the 12 Frontier Fields, labeled in order of when Hubble plans to observe them. The green labels are previous deep-field programs. The map is in right ascension and declination coordinates.

For a map of the Frontier Fields on the sky, with respect to the constellations, see this previous post. Note: The right ascension of the map in the previous post is flipped with respect to the map below in order to portray the constellations as they appear to us on Earth.


This map shows the locations of the Frontier Fields on the sky using right ascension and declination coordinates. The Frontier Fields are numbered in the order of their observations. The colors denote the amount of extinction, or dimming, of light from distant galaxies due to foreground dust. Dark red denotes the greatest dust extinction. Dark blue denotes the least dust extinction. The wavy dust band across the sky is our Milky Way galaxy. The thick purple line is the ecliptic, which is the plane of our solar system. The two thinner parallel purple lines mark 30 degrees north and 30 degrees south of the ecliptic. Previous deep-field programs are labeled on the map in green: HDF-N (Hubble Deep Field North), HDF-S (Hubble Deep Field South), UDF (Ultra Deep Field), UDS (Ultra Deep Survey), COSMOS (the Cosmic Evolution Survey), and EGS (the Extended Groth Strip). Sgr A* denotes the position of the center of our Milky Way galaxy.
Credit: D. Coe (STScI), D. Schlegel (LBNL), D. P. Finkbeiner (Harvard), M. Davis (Berkeley)

The two main features to note on the above map are the colors that signify dust that can lessen the light from distant galaxies reaching Hubble’s mirror and the thick purple line that marks the plane of our solar system, known as the ecliptic. The locations of the Frontier Fields’ galaxy clusters were chosen to be in relatively “clean” parts of the sky. By that we mean that the galaxy clusters are not located where there is a large quantity of foreground dust.

Dust Extinction

The galaxy clusters in the Frontier Fields were chosen to avoid areas of greatest dust extinction. Dust extinction is the scattering or absorption of light by dust. It is problematic because it lessens the light we receive from distant objects. On the above map, dark red denotes areas of greatest dust extinction. Dark blue denotes little dust extinction. The red, high-extinction band in the all-sky map is due to the dusty disk of our own Milky Way galaxy. It appears wavy due to the projection of the sky onto the right ascension and declination coordinate system.

Zodiacal Light

The thick purple line denotes the plane of our solar system, called the ecliptic. Dust within our solar system is clustered around the ecliptic. This dust scatters the light from our Sun and produces a bright haze. It can be very difficult to observe faint objects through the zodiacal light. For this reason, the galaxy clusters were chosen to avoid the ecliptic.

Observable from Telescopes across the Earth

Much of what we learn from the Frontier Fields will come from follow-up observations using ground-based telescopes. Most of the galaxy clusters in the Frontier Fields are observable by state-of-the-art astronomical telescopes in both the Northern and Southern hemispheres. These include the new radio telescope in Chile, named ALMA, and the suite of telescopes on Mauna Kea in Hawaii.

ALMA Array
Atacama Large Millimeter/submillimeter Array (ALMA)

Mauna Kea Observatories
Mauna Kea Observatories

See the full article here.

Frontier Fields draws on the power of massive clusters of galaxies to unleash the full potential of the Hubble Space Telescope. The gravity of these clusters warps and magnifies the faint light of the distant galaxies behind them. Hubble captures the boosted light, revealing the farthest galaxies humanity has ever encountered, and giving us a glimpse of the cosmos to be unveiled by the James Webb Space Telescope.

NASA Hubble Telescope
NASA James Webb Telescope

ScienceSprings is powered by MAINGEAR computers