From CERN: “CMS presents evidence for Higgs decays to fermions”

CERN New Masthead

Achintya Rao
3 Dec 2013

At a seminar at CERN this morning, the CMS collaboration presented several measurements of the properties of the Higgs boson. CMS showed strong evidence for the decay of Higgs bosons into fermions, corroborating CMS results shown earlier this year. CMS physicists have now measured the decay of the Higgs to pairs of bottom (b) quarks and pairs of tau leptons, with a combined significance of 4 sigma on the 5-point scale that particle physicists use to measure the certainty of a result. This significance means that the probability of a false positive is estimated to be only about one in 16,000.

The decay to fermions is an important confirmation that the particle discovered in July 2012, with a mass of around 125 GeV, behaves like the Standard Model Higgs boson. The Higgs decays into pairs of lighter particles almost immediately after it is produced in proton collisions in the LHC. In general, particles can decay into various combinations of daughter particles. The Standard Model gives precise predictions for what the decay products are and how often they should occur.

sm
Standard Model of Particle Physics

So far, the Higgs boson has been observed decaying into three types of gauge bosons: the Z, the W and the photon. The Standard Model also predicts decays to fermions – namely quarks and leptons, the fundamental particles of matter. The fermionic decays into b quarks and tau leptons are particularly strong: they are the heaviest fermions that a Higgs with a mass of around 125 GeV would decay into and are consequently the most likely fermionic decays to occur.

Using data collected at a collision energy of 7 TeV in 2011 and at 8 TeV in 2012, CMS has now completed refined searches for tau decays with several improvements over previous analyses and found an excess in this channel corresponding to significance of 3.4 sigma. Together with earlier CMS searches for b decays that revealed a 2.1 sigma excess, excesses in the two channels have a combined significance of 4 sigma, indicating strong evidence for the Higgs decaying to fermions.

See the full article here.

Meet CERN in a variety of places:

Cern Courier

THE FOUR MAJOR PROJECT COLLABORATIONS

ATLAS
CERN ATLAS New
ALICE
CERN ALICE New

CMS
CERN CMS New

LHCb
CERN LHCb New

LHC

CERN LHC New

LHC particles

Quantum Diaries


ScienceSprings is powered by MAINGEAR computers