From NASA Webb: “NASA’s Webb Telescope’s Last Backbone Component Completed”


No Writer Credit

“Assembly of the backbone of NASA’s James Webb Space Telescope, the primary mirror backplane support structure, is a step closer to completion with the recent addition of the backplane support frame, a fixture that will be used to connect all the pieces of the telescope together.

Technicians complete the center section of the backplane and backplane support frame for NASA’s James Webb Space Telescope at ATK’s facility in Magna, Utah. Photo Credit: ATK

The backplane support frame will bring together Webb’s center section and wings, secondary mirror support structure, aft optics system and integrated science instrument module. ATK of Magna, Utah, finished fabrication under the direction of the observatory’s builder, Northrop Grumman Corp.

The backplane support frame also will keep the light path aligned inside the telescope during science observations. Measuring 11.5 feet by 9.1 feet by 23.6 feet and weighing 1,102 pounds, it is the final segment needed to complete the primary mirror backplane support structure. This structure will support the observatory’s weight during its launch from Earth and hold its 18-piece, 21-foot-diameter primary mirror nearly motionless while Webb peers into deep space.”

See the full article here.

The James Webb Space Telescope (JWST), previously known as Next Generation Space Telescope (NGST), is a planned space telescope optimized for observations in the infrared, and a scientific successor to the Hubble Space Telescope and the Spitzer Space Telescope. The main technical features are a large and very cold 6.5-meter (21 ft) diameter mirror, an observing position far from Earth, orbiting the Earth–Sun L2 point, and four specialized instruments. The combination of these features will give JWST unprecedented resolution and sensitivity from long-wavelength visible to the mid-infrared, enabling its two main scientific goals – studying the birth and evolution of galaxies, and the formation of stars and planets.

The telescope is planned for launch on an Ariane 5 rocket on a five-year mission (10-year goal) with a planned launch date in 2018.

ScienceSprings is powered by MAINGEAR computers