From MIT News: “A one-way street for spinning atoms”

Work correlating ultracold atoms’ spin with their direction of motion may help physicists model new circuit devices and unusual phases of matter.

August 30, 2012
News Office

Elementary particles have a property called spin that can be thought of as rotation around their axes. In work reported this week in the journal Physical Review Letters, MIT physicists have imposed a stringent set of traffic rules on atomic particles in a gas: Those spinning clockwise can move in only one direction, while those spinning counterclockwise can move only in the other direction.

image
Elementary particles have a fundamental property called ‘spin’ that determines how they align in a magnetic field. MIT researchers have created a new physical system in which atoms with clockwise spin move in only one direction, while atoms with counterclockwise spin move in the opposite direction.
Graphic: Christine Daniloff

Physical materials with this distinctive property could be used in “spintronic” circuit devices that rely on spin rather than electrical current for transferring information. The correlation between spin and direction of motion is crucial to creating a so-called topological superfluid, a key ingredient of some quantum-computing proposals.

The MIT team, led by Martin Zwierlein, an associate professor of physics and a principal investigator in the Research Laboratory of Electronics (RLE), produced this spin-velocity correlation in an ultracold, dilute gas of atoms.

The MIT research was funded in part by the National Science Foundation, the Air Force Office of Scientific Research, the Office of Naval Research, the Army Research Office with funding from the DARPA Optical Lattice Emulator program, and the David and Lucile Packard Foundation.

See the full and important article here.


ScienceSprings is powered by MAINGEAR computers