Tagged: X-ray Technology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 7:36 pm on July 22, 2014 Permalink | Reply
    Tags: , , , , , X-ray Technology   

    From SLAC: “Bringing High-energy X-rays into Better Focus” 


    SLAC Lab

    July 22, 2014
    SLAC-invented Etching Process Builds Custom Nanostructures for X-ray Optics

    Scientists at the Department of Energy’s SLAC National Accelerator Laboratory have invented a customizable chemical etching process that can be used to manufacture high-performance focusing devices for the brightest X-ray sources on the planet, as well as to make other nanoscale structures such as biosensors and battery electrodes.

    “The tools researchers use to manipulate X-rays today are very limited,” said Anne Sakdinawat, an associate staff scientist at SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL) who developed the new “V-MACE” process with Chieh Chang, an SSRL research associate.

    scan
    Scanning electron microscope image of a cleaved spiral zone plate, a type of X-ray optic, created using a chemical etching technique that was developed at SLAC. (Chieh Chang, Anne Sakdinawat)

    “Our new technique for fabricating high performance X-ray optics involves just a few chemicals in a simple, easy-to-implement, one-step technology,” Sakdinawat said. “It offers significant advantages in many far-ranging applications.” The patent-pending technique is detailed in the June 27 edition of Nature Communications.

    Focusing X-rays, particularly higher-energy or “hard” X-rays, is particularly challenging at the nanoscale, though it is key to the success of many scientific studies at two of SLAC’s DOE Office of Science user facilities, SSRL and the Linac Coherent Light Source (LCLS) X-ray laser.

    It is also of great interest for commercial applications such as X-ray microscopy, complex electronics, and biomedical devices and imaging tools.

    Existing tools for focusing hard X-rays, such as specialized mirrors and sequences of concave metal structures that form lenses, are generally limited in how they can shape the X-ray light. Focusing the highest-energy X-rays to produce crisp images remains a challenge, as the focusing tools themselves generally lack nanoscale precision and sap away much of the X-ray energy.

    “It’s been technologically very difficult to fabricate structures that offer both high resolution and high efficiency,” Sakdinawat said, and the effectiveness of the structures, which are examples of X-ray “diffractive optics,” is typically based on the height and precision of their features.

    The new fabrication technique is adapted from a process used to create hairlike silicon wires for research on advanced batteries and electronics. It can fabricate structures up to 100 times as tall as they are wide, with dimensions accurate to billionths of a meter. The technique reduces the need to stack multiple layers to create tall structures.

    The researchers used the etching technique to build tall, precise X-ray diffractive optics, called zone plates, whose thinly spaced lines, symmetric rings or spiral patterns alternately obstruct or phase-shift X-rays and allow them to pass through in a way that separates and refocuses them. This improves the focus and produces higher-quality images.

    zone
    Scanning electron microscope (SEM) image of a zone plate pattern produced using a chemical etching technique invented at SLAC. (Chieh Chang, Anne Sakdinawat)

    zone2
    This scanning electron microscope image shows a cross-sectional view of a zone plate produced using a patent-pending chemical etching technique called “V-MACE” developed at SLAC. (Chieh Chang, Anne Sakdinawat)

    “Basically, this is like an artificial crystal,” Sakdinawat said, diffracting the X-ray light in a predictable pattern, as a crystal would. “You can basically manipulate the light in whatever fashion you want – you can shape the light in different ways,” she said, based on the design of the optics and the needs of the experiment.

    Sakdinawat and Chang tested and imaged a sample zone plate at SSRL, and they hope to construct similar plates for use in experiments at SSRL and LCLS.

    The same technique can be used to build other types of precise silicon and metal-coated nanostructures, such as filtration devices, thermoelectric devices that can create electricity from heat and components for tiny bio-sensors that can be embedded in the body, and researchers are working to tailor the process to suit the needs of government agencies and corporate partners.

    “We’re trying to expand into other fields,” Sakdinawat said. “There are many different applications for this.”

    See the full article here.

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.
    i1


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 9:17 am on July 21, 2014 Permalink | Reply
    Tags: , , , X-ray Technology   

    From Fermilab: “Prototype CT scanner could improve targeting accuracy in proton therapy treatment” 


    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    Monday, July 21, 2014
    Rhianna Wisniewski

    A prototype proton CT scanner developed by Fermilab and Northern Illinois University could someday reduce the amount of radiation delivered to healthy tissue in a patient undergoing cancer treatment.

    ct
    Members of the prototype proton CT scanner collaboration move the detector into the CDH Proton Center in Warrenville. Photo: Reidar Hahn

    The proton CT scanner would better target radiation doses to the cancerous tumors during proton therapy treatment. Physicists recently started testing with beam at the CDH Proton Center in Warrenville.

    To create a custom treatment plan for each proton therapy patient, radiation oncologists currently use X-ray CT scanners to develop 3-D images of patient anatomy, including the tumor, to determine the size, shape and density of all organs and tissues in the body. To make sure all the tumor cells are irradiated to the prescribed dose, doctors often set the targeting volume to include a minimal amount of healthy tissue just outside the tumor.

    Collaborators believe that the prototype proton CT, which is essentially a particle detector, will provide a more precise 3-D map of the patient anatomy. This allows doctors to more precisely target beam delivery, reducing the amount of radiation to healthy tissue during the CT process and treatment.

    “The dose to the patient with this method would be lower than using X-ray CTs while getting better precision on the imaging,” said Fermilab’s Peter Wilson, PPD associate head for engineering and support.

    Fermilab became involved in the project in 2011 at the request of NIU’s high-energy physics team because of the laboratory’s detector building expertise.

    The project’s goal was a tall order, Wilson explained. The group wanted to build a prototype device, imaging software and computing system that could collect data from 1 billion protons in less than 10 minutes and then produce a 3-D reconstructed image of a human head, also in less than 10 minutes. To do that, they needed to create a device that could read data very quickly, since every second data from 2 million protons would be sent from the device — which detects only one proton at a time — to a computer.

    NIU physicist Victor Rykalin recommended building a scintillating fiber tracker detector with silicon photomultipliers. A similar detector was used in the DZero experiment.

    “The new prototype CT is a good example of the technical expertise of our staff in detector technology. Their expertise goes back 35 to 45 years and is really what makes it possible for us to do this,” Wilson said.

    In the prototype CT, protons pass through two tracking stations, which track the particles’ trajectories in three dimensions. (See figure below.) The protons then pass through the patient and finally through two more tracking stations before stopping in the energy detector, which is used to calculate the total energy loss through the patient. Devices called silicon photomultipliers pick up signals from the light resulting from these interactions and subsequently transmit electronic signals to a data acquisition system.

    scheme
    In the prototype proton CT scanner, protons enter from the left, passing through planes of fibers and the patient’s head. Data from the protons’ trajectories, including the energy deposited in the patient, is collected in a data acquisition system (right), which is then used to map the patient’s tissue. Image courtesy of George Coutrakon, NIU

    Scientists use specialized software and a high-performance computer at NIU to accurately map the proton stopping powers in each cubic millimeter of the patient. From this map, visually displayed as conventional CT slices, the physician can outline the margins, dimensions and location of the tumor.

    Elements of the prototype were developed at both NIU and Fermilab and then put together at Fermilab. NIU developed the software and computing systems. The teams at Fermilab worked on the design and construction of the tracker and the electronics to read the tracker and energy measurement. The scintillator plates, fibers and trackers were also prepared at Fermilab. A group of about eight NIU students, led by NIU’s Vishnu Zutshi, helped build the detector at Fermilab.

    “A project like this requires collaboration across multiple areas of expertise,” said George Coutrakon, medical physicist and co-investigator for the project at NIU. “We’ve built on others’ previous work, and in that sense, the collaboration extends beyond NIU and Fermilab.”

    See the full article here.

    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics.


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 8:06 pm on July 17, 2014 Permalink | Reply
    Tags: , , , , , X-ray Technology   

    From SLAC Lab: “X-ray Laser Measures Leaping Electrons” 


    SLAC Lab

    July 17, 2014
    SLAC Experiment Provides New Insight About How Electrons Move Across Molecules

    Many chemical reactions – such as those at work in batteries and photosynthesis – rely on electrons moving from one atom or molecule to another. Now, scientists have directly measured the movement of electrons as they leap across parts of the same molecule, which provides useful insight about the mechanisms involved in forming and breaking chemical bonds.

    The experiment took place at SLAC’s Linac Coherent Light Source (LCLS) X-ray laser, a DOE Office of Science user facility. Scientists split molecules with pulses of infrared light and then hit them with intense X-ray pulses to drive and study the transfer of electrons between the fragments. The experiment showed that the electrons can travel surprisingly long distances – up to 10 times the length of the original, intact molecule – to jump the gap. The results are published in the July 18 issue of Science.

    “This is a clean example of a very important charge-transfer process that can only be resolved using a tool like LCLS,” said Artem Rudenko of Kansas State University, who led the experiment. The knowledge gained in the experiment may ultimately help to explain mechanisms of electron transfer in more complex molecules, including biological samples. This is also central to understanding how X-rays can damage samples and obscure X-ray images.

    As a basic form of chemical reaction, electron transfer is vital to many life processes. The 1992 Nobel Prize in Chemistry recognized pioneering theoretical work in electron transfer that has underpinned many related chemistry experiments.

    The team studied methyl iodide molecules, also known as iodomethane, which break in a predictable way when hit by intense infrared light: One fragment contains a single iodine atom, the other has carbon and hydrogen atoms.

    iodide
    In this illustration of a severed methyl iodide molecule, electrons jump the gap from one fragment containing carbon and hydrogen atoms (right) to the other fragment, which contains an iodine atom (left). Researchers used SLAC’s Linac Coherent Light Source X-ray laser to stimulate and measure the electron-transfer process. (SLAC National Accelerator Laboratory) “>In this illustration of a severed methyl iodide molecule, electrons jump the gap from one fragment containing carbon and hydrogen atoms (right) to the other fragment, which contains an iodine atom (left). Researchers used SLAC’s Linac Coherent Light Source X-ray laser to stimulate and measure the electron-transfer process. (SLAC National Accelerator Laboratory)

    They tuned the LCLS X-ray pulses to knock out electrons only from the iodine atoms, creating a positive charge that attracts electrons from the other fragment to fill the vacancies. As the fragments drift, the gap that electrons jump to reach the iodine atoms widens until it becomes too far for them to reach.

    The researchers varied the timing of the X-ray pulses to tune the distance electrons had to jump to cross this gap. They used time- and position-sensitive detectors to determine the final charge and energy of the fragments, which told them where the remaining electrons ended up. While LCLS X-ray laser pulses are ultrashort, lasting just quadrillionths of a second, or femtoseconds, the electron-transfer process typically spans less than a single femtosecond, Rudenko noted. During this very short time, the distance between the fragments does not change, allowing researchers to more easily gauge the electron movement.

    “With each pair of infrared and X-ray pulses we tried to look at just one molecule,” said Benjamin Erk of Germany’s DESY lab, who analyzed the data. “We traced essentially all of the fragments produced to give us a microscopic ‘picture’ of a single fracture event.” Researchers collected data from about 800,000 fractured molecules.

    The same team, which was also led by Daniel Rolles of DESY, has already conducted follow-up research on other molecules at LCLS, and researchers said it may be possible to study biological compounds found in DNA and RNA, as an example, using the same method. They hope to directly measure the time it takes for the electrons to move across larger and more complex molecules, Rudenko said.

    In addition to researchers from Kansas State University, DESY and SLAC, other collaborating researchers were from the Center for Free-Electron Laser Science, Max Planck Institute for Nuclear Physics, Max Planck Institute for Medical Research, University of Hamburg and Physikalisch-Technische Bundesanstalt (National Metrology Institute), all in Germany; and from Sorbonne University and the French National Center for Scientific Research in France.

    The work was supported by the Max Planck Society, which funded the development and operation of the CAMP instrument used in the experiment; the U.S. Department of Energy Office of Science; the Kansas NSF EPSCoR “First Award” program; the Young Investigator Program of the Helmholtz Association; and the German Research Foundation’s Hamburg Center for Ultrafast Imaging – Structure, Dynamics and Control of Matter at the Atomic Scale.

    See the full article here.

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.
    i1


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 6:07 pm on June 23, 2014 Permalink | Reply
    Tags: , , , , , X-ray Technology   

    From SLAC Lab: “Scientists Use X-rays to Look at How DNA Protects Itself from UV Light” 


    SLAC Lab

    June 23, 2014
    Andrew Gordon, agordon@slac.stanford.edu, (650) 926-2282

    The molecular building blocks that make up DNA absorb ultraviolet light so strongly that sunlight should deactivate them – yet it does not. Now scientists have made detailed observations of a “relaxation response” that protects these molecules, and the genetic information they encode, from UV damage.

    The experiment at the Department of Energy’s SLAC National Accelerator Laboratory focused on thymine, one of four DNA building blocks. Researchers hit thymine with a short pulse of ultraviolet light and used a powerful X-ray laser to watch the molecule’s response: A single chemical bond stretched and snapped back into place within 200 quadrillionths of a second, setting off a wave of vibrations that harmlessly dissipated the destructive UV energy.

    The international research team reported the results June 23 in Nature Communications.

    While protecting the genetic information encoded in DNA is vitally important, the significance of this result goes far beyond DNA chemistry, said Philip Bucksbaum, director of the Stanford PULSE Institute and a co-author of the report.

    “The new tool the team developed for this study provides a new window on the motion of electrons that control all of chemistry,” he said. “We think this will enhance the value and impact of X-ray free-electron lasers for important problems in biology, chemistry and physics.”

    Light Becomes Heat

    Researchers had noticed years ago that thymine seemed resistant to damage from UV rays in sunlight, which cause sunburn and skin cancer. Theorists proposed that thymine got rid of the UV energy by quickly shifting shape. But they differed on the details, and previous experiments could not resolve what was happening.

    The SLAC experiment took place at the Linac Coherent Light Source (LCLS), a DOE Office of Science user facility, whose bright, ultrashort X-ray laser pulses can see changes taking place at the level of individual atoms in quadrillionths of a second.

    Scientists turned thymine into a gas and hit it with two pulses of light in rapid succession: first UV, to trigger the protective relaxation response, and then X-rays, to detect and measure the response.

    “As soon as the thymine swallows the light, the energy is funneled as quickly as possible into heat, rather than into making or breaking chemical bonds,” said Markus Guehr, a DOE Early Career Program recipient and senior staff scientist at PULSE who led the study. “It’s like a system of balls connected by springs; when you elongate that one bond between two atoms and let it loose, the whole molecule starts to tremble.”

    Ejected Electrons Signal Changes

    The X-rays measured the relaxation response indirectly by stripping away some of the innermost electrons from atoms in the thymine molecule. This sets off a process known as Auger decay that ultimately ejects other electrons. The ejected electrons fly into a detector, carrying information about the nature and state of their home atoms.

    By comparing the speeds of the ejected electrons before and after thymine was hit with UV, the researchers were able to pinpoint rapid changes in a single carbon-oxygen bond: It stretched when hit with UV light and shortened 200 quadrillionths of a second later, setting off vibrations that continued for billionths of a second.

    “This is the first time we’ve been able to distinguish between two fundamental responses in the molecule – movements of the atomic nuclei and changes in the distribution of electrons – and time them within a few quadrillionths of a second,” said the paper’s first author, Brian McFarland, a postdoctoral researcher who has since moved from SLAC to Los Alamos National Laboratory.

    Guehr said the team plans more experiments to further explore the protective relaxation response and extend the new method, called time-resolved Auger spectroscopy, into other scientific realms.

    In addition to the Stanford PULSE Institute, which is a joint institute of SLAC and Stanford University, the study included researchers from LCLS, Stanford, the University of Perugia in Italy, Lawrence Berkeley National Laboratory, the University of Connecticut, Western Michigan University, the University of Gothenburg in Sweden, and UNIST in South Korea. Parts of the research were carried out at Berkeley Lab’s Advanced Light Source, a DOE Office of Science user facility. The work was funded by the DOE Office of Science, the Swedish Research Council, the Göran Gustafsson Foundation and the Knut and Alice Wallenberg Foundation.

    See the full article here.

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.
    i1


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 9:10 am on June 9, 2014 Permalink | Reply
    Tags: , , , X-ray Technology   

    From D.O.E Pulse: “Nanoscope to probe chemistry on the molecular scale” 

    pulse

    D.O.E. Pulse

    June 9, 2014
    Kate Greene, 510.486.4404, kgreene@lbl.gov

    For years, scientists have had an itch they couldn’t scratch. Even with the best microscopes and spectrometers, it’s been difficult to study and identify molecules at the so-called mesoscale, a region of matter that ranges from 10 to 1000 nanometers in size. Now, with the help of broadband infrared light from the Advanced Light Source (ALS) synchrotron at DOE’s Lawrence Berkeley National Laboratory (Berkeley Lab), researchers have developed a broadband imaging technique that looks inside this realm with unprecedented sensitivity and range.

    sheet

    This peptoid nanosheet, produced by Gloria Olivier and Ron Zuckerman at Berkeley Lab, is less than 8 nanometers thick at points. SINS makes it possible to acquire spectroscopic images of these ultra-thin nanosheets for the first time.

    By combining atomic force microscopy with infrared synchrotron light, researchers from Berkeley Lab and the University of Colorado have improved the spatial resolution of infrared spectroscopy by orders of magnitude, while simultaneously covering its full spectroscopic range, enabling the investigation of variety of nanoscale, mesoscale, and surface phenomena that were previously difficult to study.

    The new technique, called Synchrotron Infrared Nano-Spectroscopy or SINS, will enable in-depth study of complex molecular systems, including liquid batteries, living cells, novel electronic materials and stardust.

    “The big thing is that we’re getting full broadband infrared spectroscopy at 100 to 1000 times smaller scale,” says Hans Bechtel, principal scientific engineering associate at Berkeley Lab. “This is not an incremental achievement. It’s really revolutionary.”

    In a Proceedings of the National Academy of Sciences paper published May 6 online, titled Ultra-broadband infrared nano-spectroscopic imaging, Berkeley Lab’s Bechtel and Michael Martin, a Berkeley Lab staff scientist, and colleagues from Markus Raschke’s group at the University of Colorado at Boulder describe SINS. They demonstrate the nanoscope’s ability to capture broadband spectroscopic data over a variety of samples, including a semiconductor-insulator system, a mollusk shell, proteins, and a peptoid nanosheet. Martin says these demonstrations just “scratch the surface” of the potential of the new technique.

    Synchronizing Scopes

    SINS combines two pre-existing infrared technologies: a newer technique called infrared scattering-scanning near-field optical microscopy (IR s-SNOM) and an old laboratory standby, known even to college chemistry students, called Fourier Transform Infrared Spectroscopy (FTIR). A clever melding of these two tools, combined with the intense infrared light of the synchrotron at Berkeley Lab gives the researchers the ability to identify clusters of molecules sized as small as 20 to 40 nanometers.

    Experimental setup for SINS that includes the synchrotron light source, an atomic force microscope, a rapid-scan Fourier transform infrared spectrometer, a beamsplitter, mirrors and a detector.

    The new approach overcomes long-standing barriers with pre-existing microscopy techniques that often involve demanding technical and sample preparation requirements. Infrared spectroscopy uses low-energy light, is minimally invasive, and is applicable under ambient conditions, making it an excellent tool for chemical and molecular identifications in systems that are static as well as those that are living and dynamic. The technique works by shining low-energy infrared light onto a molecular sample. Molecules can be thought of as systems of balls (atoms) and springs (bonds between atoms) that vibrate with characteristic wiggles; they absorb infrared radiation at frequencies that correspond to their natural vibrating modes. The output from this absorption is a spectrum, often called a fingerprint, which shows distinctive peaks and dips, depending on the bonds and atoms present in the sample.

    But infrared spectroscopy has its challenges too. While it works well for bulk samples, traditional infrared spectroscopy can’t resolve molecular composition below about 2000 nanometers. The major hurdle is the diffraction limit of light, which is the fundamental barrier that determines the smallest focus spot of light and is particularly troublesome for the large wavelengths of infrared light. In recent years, though, the diffraction limit has been overcome by a technique called scattering-scanning near-field optical microscopy, or s-SNOM, which involves shining light onto a metallic tip. The tip acts as an antenna for the light, directing it to a tiny region at its apex just tens of nanometers wide.

    This trick is what’s used in IR s-SNOM, where infrared light is coupled to a metallic tip. The challenge with IR s-SNOM, however, is that researchers have been relying on infrared light produced by lasers. Lasers emit a large number of photons needed for the technique, but because they operate in a narrow wavelength band, they can only probe a narrow range of molecular vibrations. In other words, laser light simply can’t give you the flexibility to explore a spectrum of mixed molecules.

    A spectral-linescan of a blue mussel shell, which transitions from calcite to aragonite, illustrates the spatial resolution and spectroscopic range capabilities of the SINS technique. The image shows two simultaneously acquired vibrational modes across the transition region.

    Bechtel, Martin and Raschke’s team saw the opportunity to use Berkeley Lab’s ALS to overcome the laser limitation. The lab’s synchrotron produces broadband infrared light with a high-photon count that can be focused to the diffraction limit. The researchers coupled the synchrotron light to a metallic tip with an apex of about 20 nanometers, focusing the infrared beam onto the samples. The resulting spectrum is analyzed with a modified FTIR instrument.

    “This is actually one of very few examples where synchrotron light has been coupled to scanning probe microscopy,” says Raschke. “Moreover, the implementation of the technique at the synchrotron brings chemical nano-spectroscopy and -imaging out of the lab of a few laser science experts and makes it available for a broader scientific community at a user facility.”

    From mollusks to moon rocks

    The team demonstrated the technique by confirming the spectroscopic signature of silicon dioxide on silicon and by illustrating the sharp chemical transition that occurs within the shells of the blue mussel (M. edulis). Additionally, the researchers looked at proteins and a peptoid nanosheet, an engineered, ultra-thin film of proteins with medical and pharmacological applications.

    Martin is excited for the potential of SINS, which is available for researchers from any institution to use. In particular he’s interested in a closer look at battery systems, with the hope that understanding battery chemistry on the mesoscale could provide insight into better performance. Further out, he expects SINS to be useful for a range of biochemistry as well. “This hints at a dream I’ve had in my mind, to look at the surface of a cell, inside the bi-layer membrane, the channels, and receptors,” says Martin. “If we could put a SINS tip on a living cell, we could watch biochemistry happen in real time.”

    Bechtel, for his part, is intrigued by the possibility of using SINS for the study of lunar rocks, meteorites and stardust. These extraterrestrial materials have a molecular diversity that is difficult to resolve on the nanoscale, particularly in a non-destructive manner for these rare samples. A better understanding of the makeup of moon rocks and dust from space could provide clues to the formation of the planets and solar system.

    Raschke is using the technique to study the processes that limit the performance of organic solar cells. He is looking to further improve the flexibility of the technique such that it can be applied under variable and controlled atmospheric and low-temperature conditions. Among other tweaks, he plans to increase the sensitivity of the technique with the ultimate goal of performing singe-molecule chemical spectroscopy.
    This research was supported by the DOE’s Office of Science.

    See the full article here.

    DOE Pulse highlights work being done at the Department of Energy’s national laboratories. DOE’s laboratories house world-class facilities where more than 30,000 scientists and engineers perform cutting-edge research spanning DOE’s science, energy, National security and environmental quality missions. DOE Pulse is distributed twice each month.

    DOE Banner


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 1:25 pm on May 19, 2014 Permalink | Reply
    Tags: , , EBOLA, , X-ray Technology   

    From SLAC Lab: “Fighting Ebola Virus Disease: ‘Transformer’ Protein Provides New Insights” 


    SLAC Lab

    May 15, 2014
    Manuel Gnida

    A new study reveals that a protein of the Ebola virus can transform into three distinct shapes, each with a separate function that is critical to the virus’s survival. Each shape offers a potential target for developing drugs against Ebola virus disease, a hemorrhagic fever that kills up to 9 out of 10 infected patients in outbreaks such as the current one in West Africa.

    eb
    VP40, a protein of the Ebola virus, can arrange itself into three very different shapes, shown in blue, each with a distinct function. (Nikola Stojanovic/SLAC and Zachary Bornholdt/The Scripps Research Institute)

    ebola
    Each of VP40’s structural arrangements is linked to a different function in the virus life cycle. While traveling inside infected cells, VP40 assumes a butterfly shape (top). Near the cell nucleus, VP40 transforms into a ring (bottom left) that regulates how the viral genetic information is copied. At the cell membrane, VP40 assembles into a linear structure (bottom right), which plays a role in the creation of new viruses. (Erica Ollmann Saphire and Zachary Bornholdt/The Scripps Research Institute)

    At SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL) and other X-ray facilities, a team led by Erica Ollmann Saphire of The Scripps Research Institute analyzed the structure of VP40, a protein best known for its role in creating and releasing new copies of the virus from infected cells.

    “The interesting thing about VP40 is that it does more than that,” Saphire says. “We found that it is multifunctional, with several essential roles for the virus.” The team reported its results in Cell.

    One Protein, Three Structures

    The team discovered that the protein can alter its shape, causing multiple copies of the protein to join up and create three very different assemblies: a butterfly shape composed of two, a ring formed by eight, and a linear structure built from six VP40 molecules. Prior to the study, only the protein ring was known.

    But what unique functions do the individual structures have? The researchers took the study to the next level by combining their X-ray data with additional biological experiments. “This approach allowed us to track not only where the different structures are located, but also what they do inside the cell,” Saphire says.

    It turns out that the function of each structure is linked to a specific stage of the virus life cycle.

    While moving around inside infected cells, VP40 assumes the butterfly shape.

    In the early stages of an infection, the VP40 molecules change their structure and assemble into a ring near the cell nucleus, regulating how the virus’s genetic information is copied.

    In the later stages, VP40 travels to the cell’s outer layer, or membrane, and transforms into its linear structure, which plays a crucial role in the creation of new copies of the virus.

    The transformational changes of VP40 update the nearly 60-year-old “central dogma of biology,” which implies that a given gene typically makes a single protein with a single 3-D shape. “Our findings open the central dogma wide up,” says Saphire, who suggests that structural rearrangements as seen in VP40 may be more common than previously thought.

    From an evolutionary perspective, structural diversity has developed out of necessity. Unlike humans, who possess some 20,000 protein-encoding genes, the Ebola virus must get by with a drastically smaller number.

    “The Ebola virus has only seven genes. However, its proteins must serve many more functions than that,” explains Scripps researcher Zachary Bornholdt, the study’s first author. “Protein transformability allows the virus to make the most out of very little.”

    Potential Drug Targets

    All three functions of VP40 – traveling inside infected cells, regulating genetic information and creating new viruses – are essential to the Ebola virus, and disrupting any of the corresponding structures or their transformations would severely affect it. Therefore, VP40’s triple role provides researchers with important clues for the development of potential antiviral drugs.

    “The more we are able to define VP40’s structures and functions, the more we can expand what we can do with this information,” Bornholdt says. “Our data suggest, for instance, that it might be more effective to target the ring than the other structures because only a small fraction of all VP40 molecules form the ring in the course of the viral life cycle.”

    Although a cure for Ebola virus disease is still remote, the new study already has practical applications: The same VP40 proteins produced for this study are being used in test strips to identify the disease in patients affected by the current outbreak in West Africa.

    The research team included scientists from The Scripps Research Institute and the University of Wisconsin-Madison in the U.S., as well as from the University of Tokyo and the Exploratory Research for Advanced Technology Program in Japan. Part of the research was performed at SSRL’s microbeam facility for crystallography (Beam Line 12-2). The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by the National Institutes of Health, National Institute of General Medical Sciences.

    See the full article here.

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.
    i1


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 12:57 pm on May 15, 2014 Permalink | Reply
    Tags: , , , X-ray Technology   

    From SLAC Lab: “Exploring Heat and Energy at the Smallest Scales” 


    SLAC Lab

    May 14, 2014
    Glenn Roberts Jr.

    Special low-alpha operating period enables precise measurement of changes in material

    In a recent experiment at SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL), scientists “tickled” atoms to explore the flow of heat and energy across materials at ultrasmall scales. The experiment, detailed in the May 6 edition of Structural Dynamics, enabled them to see subtle light-driven changes in the atomic structure of thin materials, relevant to thermoelectric and electronic devices.

    “These results show that we can really follow the flow of energy across nanoscale devices, and resolve the dynamics in a way that hasn’t been possible before. It opens the door to new, more efficient types of devices,” said research team member Aaron Lindenberg, an assistant professor at SLAC and Stanford affiliated with the Stanford PULSE Institute and the Stanford Institute for Materials and Energy Sciences [SIMES].

    Striking superthin materials with specially timed X-ray and laser pulses fired at a rate of more than one million times per second, scientists caused atoms to vibrate and measured their movement with accuracy down to a fraction of a femtometer, which is a billion-billionth of a meter.

    “We were able to see remarkably small structural changes that we had never envisioned we could,” said Michael Kozina, a graduate student with the Stanford PULSE Institute, a joint institute of SLAC and Stanford, who led the research.

    Researchers observed a longer-than-expected time delay, measured at about a billionth of a second, in the transfer of heat from the thin films to the surface below.

    The cause of this delay has important implications for materials research, Kozina said. “In electronic devices, you want to dissipate the heat as fast as you can, and in thermoelectric devices you want to maintain that delay as long as you can and prevent heat from flowing rapidly,” he added. “Now we have a way to directly look at this.”

    laser
    An optical laser casts a green glow during a low-alpha-mode experiment at SSRL. (Aaron Lindenberg/SLAC)

    ssrl
    A view of a materials science experimental setup at SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL). The circular instrument that frames this photo is part of a diffractometer that was used to align samples and a detector with X-rays. The metallic cylinders are motors used to align the samples. The blue box is one of the X-ray detectors used in the experiment. (Mike Kozina/SLAC)

    The response of the materials to the rapid-fire laser pulses, which was too fast to be measured for each individual pulse, was averaged out over time.

    The experiment was performed during a series of special operating periods at SSRL known as low-alpha mode, in which the accelerator ring that feeds X-rays to SSRL experiments is tuned to produce shorter-than-usual pulses, measured in trillionths of a second, and its electric current is dialed down. SSRL is one of just a few synchrotrons in the world to run in low-alpha mode.

    lode
    An optical laser interacts with a thin-film material in an experiment at SLAC’s Stanford Synchrotron Radiation Lightsource. The circular instrument is part of an X-ray diffractometer, and the bright light toward the middle of the photo is a view of the laser light striking the sample. The other bright spot in this image, at upper left, is produced by laser light glaring on an X-ray detector. In this experiment, laser pulses were synchronized with rapid-fire X-ray pulses to study very slight atomic-scale changes in samples. (Mike Kozina/SLAC)

    “Short-pulse research is an important component in SSRL’s science strategy and provides capabilities that are complementary to the Linac Coherent Light Source,” SLAC’s X-ray laser, said Piero Pianetta, acting director of SSRL.

    green
    Green laser light is visible in an experimental setup at SLAC’s SSRL. Infared laser light was “frequency-doubled” to produce this green laser light. The large apparatus on the left is an X-ray diffractometer that was used to align the sample and detector with X-rays. (Mike Kozina/SLAC)

    Kozina said low-alpha-mode experiments are complementary to other research the group has conducted at LCLS and using other tools, because they allow researchers to probe very slight processes in materials and don’t require jarring the material with higher-energy pulses to get a measurable response. “It’s like the difference between tickling the atomic structure in the samples versus hitting it with a hammer,” he said.

    The findings from this experiment, which explored films of bismuth, bismuth ferrite and PZT (a blend containing lead, zirconium and titanium) measuring just billionths of an inch thick, mark the first journal-published scientific results obtained during low-alpha-mode operations at SSRL.

    A next step in the research is to study different alignments of the samples with respect to the surface they rest on to measure whether those changes slow or speed the transfer of heat and charge, Kozina said.

    SSRL has three scheduled periods each year, each spanning a few days, for low-alpha mode, and Kozina said that the latest research is the culmination of a handful of experimental runs over the course of several years. “Incremental successes have finally reached the threshold of experimental success,” he said, “The goal is to make this operating mode more turn-key and open it up to visiting researchers.”

    See the full article here.

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.
    i1


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 7:38 pm on May 8, 2014 Permalink | Reply
    Tags: , , , , X-ray Technology   

    From Berkeley Lab: “Berkeley Lab Develops Nanoscope to Probe Chemistry on the Molecular Scale” 


    Berkeley Lab

    May 07, 2014
    Kate Greene 510-486-4404 kgreene@lbl.gov

    For years, scientists have had an itch they couldn’t scratch. Even with the best microscopes and spectrometers, it’s been difficult to study and identify molecules at the so-called mesoscale, a region of matter that ranges from 10 to 1000 nanometers in size. Now, with the help of broadband infrared light from the Advanced Light Source (ALS) synchrotron at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), researchers have developed a broadband imaging technique that looks inside this realm with unprecedented sensitivity and range.

    pep
    This peptoid nanosheet, produced by Gloria Olivier and Ron Zuckerman at Berkeley Lab, is less than 8 nanometers thick at points. SINS makes it possible to acquire spectroscopic images of these ultra-thin nanosheets for the first time.

    By combining atomic force microscopy with infrared synchrotron light, researchers from Berkeley Lab and the University of Colorado have improved the spatial resolution of infrared spectroscopy by orders of magnitude, while simultaneously covering its full spectroscopic range, enabling the investigation of variety of nanoscale, mesoscale, and surface phenomena that were previously difficult to study.

    The new technique, called Synchrotron Infrared Nano-Spectroscopy or SINS, will enable in-depth study of complex molecular systems, including liquid batteries, living cells, novel electronic materials and stardust.

    “The big thing is that we’re getting full broadband infrared spectroscopy at 100 to 1000 times smaller scale,” says Hans Bechtel, principal scientific engineering associate at Berkeley Lab. “This is not an incremental achievement. It’s really revolutionary.”

    In a Proceedings of the National Academy of Sciences paper published May 6 online, titled Ultra-broadband infrared nano-spectroscopic imaging, Berkeley Lab’s Bechtel and Michael Martin, a Berkeley Lab staff scientist, and colleagues from Markus Raschke’s group at the University of Colorado at Boulder describe SINS. They demonstrate the nanoscope’s ability to capture broadband spectroscopic data over a variety of samples, including a semiconductor-insulator system, a mollusk shell, proteins, and a peptoid nanosheet. Martin says these demonstrations just “scratch the surface” of the potential of the new technique.

    Synchronizing Scopes

    SINS combines two pre-existing infrared technologies: a newer technique called infrared scattering-scanning near-field optical microscopy (IR s-SNOM) and an old laboratory standby, known even to college chemistry students, called Fourier Transform Infrared Spectroscopy (FTIR). A clever melding of these two tools, combined with the intense infrared light of the synchrotron at Berkeley Lab gives the researchers the ability to identify clusters of molecules sized as small as 20 to 40 nanometers.

    exp
    Experimental setup for SINS that includes the synchrotron light source, an atomic force microscope, a rapid-scan Fourier transform infrared spectrometer, a beamsplitter, mirrors and a detector.

    micro
    Atomic force microscope (AFM/MFM) on the left with controlling computer on the right.

    The new approach overcomes long-standing barriers with pre-existing microscopy techniques that often involve demanding technical and sample preparation requirements. Infrared spectroscopy uses low-energy light, is minimally invasive, and is applicable under ambient conditions, making it an excellent tool for chemical and molecular identifications in systems that are static as well as those that are living and dynamic. The technique works by shining low-energy infrared light onto a molecular sample. Molecules can be thought of as systems of balls (atoms) and springs (bonds between atoms) that vibrate with characteristic wiggles; they absorb infrared radiation at frequencies that correspond to their natural vibrating modes. The output from this absorption is a spectrum, often called a fingerprint, which shows distinctive peaks and dips, depending on the bonds and atoms present in the sample.

    But infrared spectroscopy has its challenges too. While it works well for bulk samples, traditional infrared spectroscopy can’t resolve molecular composition below about 2000 nanometers. The major hurdle is the diffraction limit of light, which is the fundamental barrier that determines the smallest focus spot of light and is particularly troublesome for the large wavelengths of infrared light. In recent years, though, the diffraction limit has been overcome by a technique called scattering-scanning near-field optical microscopy, or s-SNOM, which involves shining light onto a metallic tip. The tip acts as an antenna for the light, directing it to a tiny region at its apex just tens of nanometers wide.

    This trick is what’s used in IR s-SNOM, where infrared light is coupled to a metallic tip. The challenge with IR s-SNOM, however, is that researchers have been relying on infrared light produced by lasers. Lasers emit a large number of photons needed for the technique, but because they operate in a narrow wavelength band, they can only probe a narrow range of molecular vibrations. In other words, laser light simply can’t give you the flexibility to explore a spectrum of mixed molecules.

    spec
    A spectral-linescan of a blue mussel shell, which transitions from calcite to aragonite, illustrates the spatial resolution and spectroscopic range capabilities of the SINS technique. The image shows two simultaneously acquired vibrational modes across the transition region.

    Bechtel, Martin and Raschke’s team saw the opportunity to use Berkeley Lab’s ALS to overcome the laser limitation. The lab’s synchrotron produces broadband infrared light with a high-photon count that can be focused to the diffraction limit. The researchers coupled the synchrotron light to a metallic tip with an apex of about 20 nanometers, focusing the infrared beam onto the samples. The resulting spectrum is analyzed with a modified FTIR instrument.

    “This is actually one of very few examples where synchrotron light has been coupled to scanning probe microscopy,” says Raschke. “Moreover, the implementation of the technique at the synchrotron brings chemical nano-spectroscopy and -imaging out of the lab of a few laser science experts and makes it available for a broader scientific community at a user facility.”

    From mollusks to moon rocks

    The team demonstrated the technique by confirming the spectroscopic signature of silicon dioxide on silicon and by illustrating the sharp chemical transition that occurs within the shells of the blue mussel (M. edulis). Additionally, the researchers looked at proteins and a peptoid nanosheet, an engineered, ultra-thin film of proteins with medical and pharmacological applications.

    Martin is excited for the potential of SINS, which is available for researchers from any institution to use. In particular he’s interested in a closer look at battery systems, with the hope that understanding battery chemistry on the mesoscale could provide insight into better performance. Further out, he expects SINS to be useful for a range of biochemistry as well. “This hints at a dream I’ve had in my mind, to look at the surface of a cell, inside the bi-layer membrane, the channels, and receptors,” says Martin. “If we could put a SINS tip on a living cell, we could watch biochemistry happen in real time.”

    mm
    Berkeley Lab’s Michael Martin

    Bechtel, for his part, is intrigued by the possibility of using SINS for the study of lunar rocks, meteorites and stardust. These extraterrestrial materials have a molecular diversity that is difficult to resolve on the nanoscale, particularly in a non-destructive manner for these rare samples. A better understanding of the makeup of moon rocks and dust from space could provide clues to the formation of the planets and solar system.

    Raschke is using the technique to study the processes that limit the performance of organic solar cells. He is looking to further improve the flexibility of the technique such that it can be applied under variable and controlled atmospheric and low-temperature conditions. Among other tweaks, he plans to increase the sensitivity of the technique with the ultimate goal of performing singe-molecule chemical spectroscopy.

    This research was supported by the DOE Office of Science.

    See the full article here.

    A U.S. Department of Energy National Laboratory Operated by the University of California

    University of California Seal

    DOE Seal


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 4:16 am on May 7, 2014 Permalink | Reply
    Tags: , , , , X-ray Technology   

    From APS at Agonne Lab: “Advanced Photon Source to remain leader in protein structure research for years” 

    News from APS at Argonne National Laboratory

    May 5, 2014
    Brian Grabowski

    Proteins are involved in virtually every process in all living cells on the planet, be it a bacterium or yourself. In humans, antibodies defend against invading bacteria, viruses and other infectious agents. Insulin helps regulate how your body uses carbohydrates and fats. Lactase helps digest lactose from dairy products.

    ps
    The world’s first protein characterization research facility directly attached to a light source will open in the near future at the Advanced Photon Source. The Advanced Protein Characterization Facility will use state-of-the-art robotics for gene cloning, protein expression, protein purification and protein crystallization.

    But scientists know the structures and functions of only a small fraction of the proteins in living systems. The vast majority remain a mystery. The backlog of uncharacterized proteins grows quickly every day as scientists continue to determine the genetic makeups of thousands of new organisms, using astonishingly efficient techniques of genome sequencing.

    No X-ray facility in the world has supported more protein structure research and characterized more proteins than the Advanced Photon Source (APS) at the U.S. Department of Energy’s Argonne National Laboratory. Soon this 2/3-mile-in-circumference X-ray instrument will get a boost in efficiency that likely will translate into a big boon for the discovery of new pharmaceuticals and the control of genetic disorders and other diseases, as well as advancing the biotech industry.

    The world’s first protein characterization research facility directly attached to a light source will open in the near future at the APS. The Advanced Protein Characterization Facility (APCF) will use state-of-the-art robotics for gene cloning, protein expression, protein purification and protein crystallization.

    robotics
    Not beautiful, but very efficient

    “The net result will be more protein structures analyzed per year, higher resolution structures and more research into protein function,” said Andrzej Joachimiak, an Argonne Distinguished Fellow who also is director of the Structural Biology Center’s (SBC’s) Sector 19 beamlines and the Midwest Center for Structural Genomics. “This facility has been designed to integrate systems biology and molecular biology with gene cloning, protein expression, protein purification, protein crystallization and crystal testing and delivery to the APS. There is nothing like this anywhere in the world right now.”

    When a new protein structure is discovered and verified, the data are deposited in the Protein Data Bank repository to make it available to researchers around the world. For the last 11 consecutive years, the APS has been far and away the world leader in protein structure deposits. The APS has 14 beamlines dedicated to the study of protein crystals through a technique called macromolecular crystallography.

    “Two Nobel Prizes for Chemistry were awarded in the past four years for APS-based research involving crystallography,” said Joachimiak, “One Nobel Prize was for research into the structure and function of ribosomes on SBC’s 19-ID beamline, and another was awarded in 2012 for studies of G-protein-coupled receptors at a GM/CA-CAT micro-focus beamline.”

    Ribosomes make proteins in all living cells. Improved knowledge about bacterial ribosomes, for example, is speeding development of new antibiotics that combat bacterial infections by interfering with protein production. G-protein-coupled receptor (GPCR) proteins help cells stay in constant communication with each other, thereby facilitating resource sharing. When normal cells become cancerous, GPCRs are changed, too. The change can corrupt the lines of communication, allowing the cancerous cells to grow without limits. The first discovery of the structure of a human GPCR was made at the APS as part of the Nobel Prize-winning research. In fact, the structure was captured at the exact moment the GPCR was signaling across a cell membrane.

    The APCF will be available for use by the more than 5,500 scientists who visit the APS annually, but it will have a particularly strong connection to Argonne’s SBC and the beamline it operates at Sector 19. In 2013, more than 660 crystallographers used the SBC facility to collect data on hundreds of projects, including proteins from the Ebola virus. More than 4,100 protein structures have been deposited into the Protein Data Bank from SBC.

    Protein structures are analyzed by crystalling the proteins and then placing the single crystals into an X-ray beam for analysis using X-ray diffraction. The results depend on the quality of both the protein crystal and the X-ray beam. The APS provides some of the most brilliant X-ray beams in the Western Hemisphere. Additionally, the APS generates a highly parallel beam, which enables tight focusing of the X-rays. Staff at the National Institute of General Medical Sciences and National Cancer Institute structural biology facility (GM/CA-CAT) beamline capitalized on this and created the world’s first micro X-ray beam at the request of visiting researchers. “The micro-beam was essential for the GPCR research,” said Joachimiak.

    The crystallography capabilities of the APS will increase with a planned upgrade. “After the upgrade, the brilliance of the X-ray beam will increase by two to three orders of magnitude,” Joachimiak said. “The beam will be more parallel, too, so we will be able to focus down to a very small beam size. This beam will also be two to three times more intense. The upgrade should help ensure APS leadership in macromolecular crystallography for many years to come.”

    See the full article here.

    Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science

    The Advanced Photon Source at Argonne National Laboratory is one of five national synchrotron radiation light sources supported by the U.S. Department of Energy’s Office of Science to carry out applied and basic research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels, provide the foundations for new energy technologies, and support DOE missions in energy, environment, and national security.

    Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

    Argonne Lab Campus
    Argonne APS Banner

    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 2:10 pm on May 6, 2014 Permalink | Reply
    Tags: , , X-ray Technology   

    From Argonne Lab: “Scientists find x-rays can cause reversible resistance changes” 

    News from Argonne National Laboratory

    May 6, 2014
    Jared Sagoff

    Usually, when we think of a device that has defects, it means it’s time to throw it out. However, for several types of materials, imperfections are what actually make them function in the first place. Finding ways to control defects in a material without irrevocably damaging it could yield new information in the quest for an array of improved devices.

    Synchrotron X-rays are frequently used to image a wide range of different materials, but they can also cause chemical changes as well. In a new study, researchers at the U.S. Department of Energy’s Argonne National Laboratory looked at how a material’s electrical resistance changes when it is irradiated with these high-energy X-rays.

    In the experiment, the researchers looked at titanium dioxide, a material known for exhibiting multiple resistive states induced by defect movement. This behavior, known as resistive switching, could offer scientists a mechanism that may hold the key to potential new computer memories and even artificial neurons, according to Argonne materials scientist Seungbum Hong, who led the study along with Argonne physicist Jung Ho Kim.

    “It’s not easy to make a nanoscale device that switches reliably between resistive states,” Hong said. “In order to design reliable resistive switching materials, you need to understand and control the defect at the nanoscale.”

    When the titanium dioxide cell was exposed to the X-rays generated by Argonne’s Advanced Photon Source, the scientists found the existence of a photovoltaic-like effect, which changes the resistance by orders of magnitude, depending on the intensity of the oncoming X-rays. This effect, combined with an X-ray irradiation-induced phase transition, triggers a non-volatile reversible resistance change – that is, the change in resistance can be observed even after the X-rays are turned off.

    Argonne APS
    Advanced Photon Source at Argonne Lab

    “This result was somewhat serendipitous, in that people had known that X-rays could damage these materials, but they hadn’t been looking for this kind of reversible change,” Kim said.

    An article based on the research, titled X-ray Irradiation Induced Reversible Resistance Change in Pt/TiO2/Pt Cells, appeared in the January 13 edition of ACS Nano. Two other Argonne physicists, Jeff Eastman and John Freeland, also contributed to the study.

    This research was funded by the U.S. Department of Energy’s Office of Science.

    Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    The Advanced Photon Source at Argonne National Laboratory is one of five national synchrotron radiation light sources supported by the U.S. Department of Energy’s Office of Science to carry out applied and basic research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels, provide the foundations for new energy technologies, and support DOE missions in energy, environment, and national security. To learn more about the Office of Science X-ray user facilities, visit http://science.energy.gov/user-facilities/basic-energy-sciences/.

    See the full article here.

    Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science

    Argonne Lab Campus


    ScienceSprings is powered by MAINGEAR computers

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 283 other followers

%d bloggers like this: