Tagged: SETI Institute Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 4:59 pm on October 13, 2014 Permalink | Reply
    Tags: , , SETI Institute   

    From SETI Institute: “Fingerprints of Life on Mars” 


    SETI Institute

    October 07 2014

    Nathalie Cabrol
    SETI Institute
    Email: ncabrol@seti.org
    Email: Nathalie.A.Cabrol@nasa.gov
    Tel: +1 650-604-0312

    Edna DeVore, Media Contact
    SETI Institute
    E-mail: edevore@seti.org
    Tel: +1 650 960-4538

    NASA’s Astrobiology Institute (NAI) announced that the SETI Institute has been selected as a new member of the NAI for a 5-year research program, “Changing Planetary Environments and the Fingerprints of Life.” Led by planetary geologist and Senior Research Scientist, Nathalie Cabrol, the team’s work will address key questions. How can we identify the signature of life not just here on Earth, but on Mars as well? How does a planet’s changing environment impact the evidence for life?

    serti

    “I am absolutely thrilled that the SETI Institute is joining the NAI. In the next five years, along with our partner institutions, we will focus on decoding the fingerprints of life—the biosignatures—in extreme environments here on Earth to help us look for life on Mars. Our goal is to understand the survival of biosignatures from an early, wetter Mars to the harsh environment of the red planet today. Understanding the role that the changing Martian environment has had on biosignatures will inform us on how to recognize these signatures, and how to explore them. We bring to this ambitious quest new exploration tools and, with NASA’s Mars 2020 on the horizon, the timing could not be more perfect,” stated Cabrol. “Personally and professionally, this is a tremendously exciting project because we aim to develop a roadmap to biosignature exploration for Mars for future missions.”

    nc
    Principal Investigator, Nathalie Cabrol

    “I am delighted at the news that the SETI Institute led team has been chosen as one of the new members in the NASA Astrobiology Institute. The team worked hard at putting together an outstanding proposal and it is a positive reflection on the process that is in place to review the proposals that their effort is recognized and rewarded by their professional peers. We look forward to an exciting five years of outstanding research under the aegis of this award,” said David Black, President and CEO of the SETI Institute.

    To model and test strategies for biosignature detection, Cabrol’s team will conduct fieldwork in extreme environments on Earth that are analogous to sites on Mars where water once flowed. Fieldwork will be done at Yellowstone National Park, sites in California and Chile, Axel Heiberg Island in the high Arctic, and Western Australia. Each site is an analog to Mars: volcanic and hydrothermal terrain, lake sediments, evaporates, and perennial cold springs. Sites will be explored from satellites, air, ground, and at the microscopic level in the field and laboratory. Understanding how to integrate this multi-scale information will help scientists learn how to select the best sites for discovering biosignatures on Mars.

    Cabrol assembled a diverse team of experts in planetary science, robotics, laboratory experimentation, and exploration to conduct fieldwork, analyze samples, and develop a biosignature roadmap to guide the search for life on Mars. In addition to more than a dozen scientists at the SETI Institute, her team brings together scientists from universities, government agencies and industry partners in the United States, Canada, Europe, Australia and South America. In the US, partners include Arizona State University, University of Montana, University of Tennessee, Carnegie Mellon, Georgia Institute of Technology, Honeybee Robotics, Pacific Northwest National Laboratory, and NASA Ames Research Center. Non-US partners include McGill University (Canada), Centro de Astrobiologia (CAB, Madrid, Spain), Deutscher Wetterdienst (Germany), Friedrich-Alexander University (Germany), and Campoalto for logistics in Chile. Over the next 5 years, more than twenty scientists will work together to help answer the question of where, what and how to search for the right rocks on Mars to discover the fingerprints of life on the red planet.

    See the full article here.

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 7:12 pm on October 6, 2014 Permalink | Reply
    Tags: , , , , , SETI Institute,   

    From SPACE.com: “Aliens May Be Out There, But Too Distant for Contact” 

    space-dot-com logo

    SPACE.com

    October 06, 2014
    Irene Klotz

    The Milky Way may be home to some 3,000 extraterrestrial civilizations but the vast distances between our galactic cousins will make contact extremely rare, a new study concludes.

    Data collected by NASA’s Kepler space telescope and other observatories scouting for planets beyond the solar system indicate Earth is one of some 40 billion potentially habitable worlds in the galaxy, with about one new life-friendly planet forming every year, astronomer Michael Garrett, head of the Dutch astronomy research foundation ASTRON, said at the International Astronomical Congress in Toronto.

    NASA Kepler Telescope
    NASA/Kepler

    Sounds promising, until you consider the sheer size of the Milky Way, which spans more than 100,000 light-years in diameter. Light travels at about 186,000 miles per second, but a signal will still take more than 4 years to reach neighboring system Alpha Centauri and 100,000 years to travel from one end of the galaxy to the other.

    “On average, you’d expect the civilizations to be separated by at least 1,000 light-years in the Milky Way. That’s a large distance, and for communication purposes you need to allow for twice the travel distance, so you’re talking about civilizations that have to be around for at least a few thousand years in order to have the opportunity to talk to each other,” Garrett said.

    “We don’t really know the time scales in which civilizations persist,” he added.

    The one example available — Earth — indicates that life essentially developed as soon as the conditions were right, but intelligent life arose comparatively late.

    “It’s really just essentially in the last few minutes of the overall evolution of life on the planet,” Garrett said. “I don’t want to be too negative about this, but … my basic conclusion is that SETI signals will be rare in the Milky Way.”

    That doesn’t mean astronomers shouldn’t look, he added. Quite the contrary, given the huge technological leaps in radio astronomy and in data processing techniques compared to what was available for Search for Extraterrestrial Intelligence, or SETI, programs 60 years ago.

    SETI also is benefitting from sister radio astronomy projects, such as the ongoing quest to find the source of mysterious transient radio bursts.

    SETI@home screensaver
    SETI@home from Space Science LabSpaceScienceLabs at UC Berkeley

    “SETI is not easy, but it’s a pursuit that is well worth doing. The question is so important,” Garrett said. “Everyone is interested, not just scientists and space enthusiasts. People in the street are interested to know what else is out there.”

    See the full article, with added material, here.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 2:40 pm on September 26, 2014 Permalink | Reply
    Tags: , , , , , , SETI Institute   

    From Seth Shostak at SETI Institute: “So What Really Goes Down if We Find the Aliens?” 


    SETI Institute

    September 26, 2014
    By Seth Shostak, Senior Astronomer and Director of the Center for SETI Research

    SETI Seth Shostak
    Seth Shostak

    If we trip across life that’s not of this world, do we blast it or befriend it? What impact would it have on our society?

    This was the topic of a two-day symposium held at the John W. Kluge Center of the Library of Congress last week. Several dozen researchers — astronomers, philosophers, theologians, biologists, historians, and other tweed-jacketed specialists — opined on what might happen should we find we’re not alone.

    A lot of the discussion, unsurprisingly, was about discovering life that’s intelligent. This prompted a symposium leitmotiv that was dished out repeatedly: when thinking about aliens, beware of anthropocentrism. In other words, don’t assume that they will be similar to us ethically, culturally, or cognitively.

    Well sure, I can get down with that. I agree that we tend to view everything in the universe through the prism of our own natures. Mind you, I note that the squirrels in my front yard seem to do the same. They’re awfully squirrel-centric. That ensures that they attend to activities that are truly important (mostly acorn management). I don’t think less of them for that.

    Where this leitmotiv became more than a neo-Greek caution against hubris was when it was used to argue that SETI (the Search for Extraterrestrial Intelligence) is fatally flawed. We were told that our hunt for aliens assumes that they are like us. That kind of provincial attitude, it was said, will doom SETI to endless frustration. If we don’t think outside our own biological box, we’ll fail to find any company in the cosmos.

    But wait a minute: That’s akin to arguing that the 1976 Viking landers — with their complex instrumentation for sensing microbial Martians — were a clear non-starter because they were sensitive to carbon-based metabolism; in other words, life as we know it. Well, that’s true, but it was really hard to design experiments that were good at finding life as no-one-knows-it.

    Actually, when it comes to SETI experiments, we try not to make assumptions about the aliens’ cultural, ethical, or even biological makeup. We don’t assume they are similar to us. Rather, we assume that their physics is similar to ours — that they use radio transmitters or lasers to send information from wherever they are to wherever they need it. That’s no more anthropocentric than assuming that — if aliens use ground transportation — at least some of it is on wheels.

    Anthropocentrism is always a bugaboo, but to say that it might irretrievably cripple our efforts to find evidence for intelligence elsewhere is certainly arguable. So let’s consider that SETI experiments are not as myopic as some would aver. The big question then becomes, what happens if we pick up a ping?

    First, allow me to dispense with the false, but nonetheless ever-popular idea that the public wouldn’t be told. That’s goofier than Big Bird, and easily disproved by a cursory reference to SETI’s occasional false alarms. This paranoid idea probably derives from the widespread claim that 67 years ago some wayward aliens made a dismaying navigational error, and piloted their craft into the dirt near Roswell, New Mexico. The fact that this event is not the subject of much investigation by research scientists is often explained as the consequence of a government cover-up. The feds don’t want you to know about extraterrestrials.

    One could make the same argument about the lack of academic interest in leprechauns. Maybe the Irish government is hiding the bodies. I don’t find that a compelling argument. But I think the popular notion of secret evidence sparks the mistaken belief that a SETI detection would be hushed up. It won’t be.

    Of greater relevance to the subject of this symposium — preparing for discovery — was what would the signal reveal? What could we learn about the senders’ construction or culture?

    The most plausible answer is “not much.” Just as hearing a rustle in the forest provides precious little information on the flora or fauna that caused it, so too would an alien ping be largely uninformative, at least at first. There might be an accompanying message, but new and different instruments would be required to find it.

    What we could learn quickly are a few, mostly astronomical facts, to wit: (1) How far away is their solar system; (2) What type of star do they orbit? (3) The length of their day and their year.

    That might be it for a while. And “a while” would be years, at minimum.

    If we find intelligent beings elsewhere in our galaxy, you’ll not be quickly confronted with complex philosophical problems of understanding their mode of thinking or their biological blueprint — or even knowing whether they are biological. You won’t be misled by anthropocentric thinking, because there will be precious little information about whether they’re like us or not. For years, all we’ll be able to say is that there’s something out there that’s at least as technologically competent as we are.

    But of course, that’s still saying a lot.

    See the full article here.

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 12:42 pm on September 26, 2014 Permalink | Reply
    Tags: , , SETI Institute   

    From SETI: “To Find Alien Life, Expect the Unexpected” 


    SETI Institute

    temp

    Highlights of a Library of Congress symposium on first contact with extraterrestrial life

    September 25, 2014
    Dirk Schulze-Makuch

    Last week experts from a variety of fields answered a call from Steven Dick, the Baruch S. Blumberg NASA/Library of Congress Chair in Astrobiology at the Library of Congress, to meet for two days and discuss the possible discovery of extraterrestrial life and the impact such a discovery would have on society. The symposium consisted of individual talks and panel discussions, along with remarks by Rep. Lamar Smith, chair of the House science committee, Mary Voytek of NASA’s astrobiology program, and Steven Dick, who spoke on how far we have advanced our understanding.

    cows

    Some spectators from the media and “UFOlogists” in the audience may have been disappointed when Seth Shostak from the SETI Institute opened by stating that no signal from extraterrestrial intelligent beings has been discovered as yet. On the first afternoon I gave a talk about the “Landscape of Life,” which—as philosopher of science Carlos Mariscal put it—is extremely difficult to evaluate, since N still equals 1: There is only one biosphere we know of. And given that life on Earth is already extremely diverse, we can only image how diverse it would be in the universe.

    bio
    Description
    English: SeaWiFS Global Biosphere September 1997 – August 1998; This composite image gives an indication of the magnitude and distribution of global primary production, of both oceanic (mg/m3 chlorophyll a) and terrestrial (normalized difference land vegetation index), see Normalized Difference Vegetation Index (NVDI).
    Date 25 October 2005
    Source http://oceancolor.gsfc.nasa.gov/SeaWiFS/BACKGROUND/Gallery/index.html and from en:Image:Seawifs global biosphere.jpg
    Author Provided by the SeaWiFS Project, Goddard Space Flight Center and ORBIMAGE

    Neuroscientist Lori Marino continued with a presentation about the “Landscape of Intelligence” among animal species on Earth, and anthropologist John Traphagan spoke about how cultural and ethnic differences influence how we imagine aliens (and often reveal more about ourselves than about the aliens!). Marino pointed out that human interactions—such as historical encounters between aboriginal and western cultures—are often used as analogs for a first contact with extraterrestrials. A better analog, she says, would be our relationship with whales, dolphins, and other intelligent species on Earth.

    The morning session of the second day included philosopher Carol Cleland taking up a question that nicely complemented Marino’s talk: What would be the moral status of indigenous microbes on Mars or intelligent extraterrestrial animals? Philosopher Susan Schneider spoke about artificial intelligence and whether we might expect to contact not organic beings, but rather a “machine mind”—some sort of robot, android, or Borg. Brother Guy Consolmagno of the Vatican Observatory then considered the theological implications of first contact. To the question “Would you baptize an extraterrestrial?” he responded, “Only if he desires so!”

    The second day’s afternoon session included more elaboration on the theme of cultural bias in the field of astrobiology/SETI. Clearly, we’ll have to free ourselves of our own cultural mindsets to fathom what aliens really might be like. A technologically advanced octopus? A superior hive mind? Or maybe a smart, individually inclined warm-blooded animal like we see in the movies?

    Personally, I expect—based on evolutionary biology—a social predator, probably an omnivore (eating both animals and plants). There is a reason why cows are pretty stupid. They only need to graze and run away from predators. On the other hand, the predator has to be smart to eat the cow and anticipate its future movements. And of course, there’s always the possibility of swarm intelligence, as in my own sci-fi novel Alien Encounter.

    There was plenty to talk and think about at the meeting, and it’s not too soon to start the discussion. Some SETI researchers expect to detect intelligent signals within the next 25 years, given the current progress in technology. Who knows, perhaps we’re receiving the signals already, and just don’t see them or know how to interpret them!

    See the full article here.

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 5:03 pm on September 8, 2014 Permalink | Reply
    Tags: , , , , SETI Institute   

    From SETI: “Moonlets Created and Destroyed in a Ring of Saturn” 


    SETI Institute

    Monday, September 08 2014

    Robert French
    SETI Institute
    E-mail: rfrench@seti.org
    Tel: +1 650 960-0239

    Mark Showalter
    SETI Institute
    E-mail: mshowalter@seti.org
    Tel: +1 650 960-0234

    Seth Shostak, Media Contact
    SETI Institute
    E-mail: seth@seti.org,
    Tel: +1 650 960-4530

    Preston Dyches, Media Contact
    Jet Propulsion Laboratory, Pasadena, Calif.
    E-mail: preston.dyches@jpl.nasa.gov
    Tel: +1 818 354-7013

    There is an ongoing drama in the Saturnian ring system that causes small moons to be born and then destroyed on time scales that are but an eyeblink in the history of the solar system. SETI Institute scientists Robert French and Mark Showalter have examined photos made by NASA’s Cassini spacecraft and compared them to 30 year-old pictures made by the Voyager mission. They find that there is a marked difference in the appearance of one of the rings, even over this cosmologically short interval, a difference that can be explained by the brief strut and fret of small moons.

    rings

    NASA Cassini Spacecraft
    NASA/CAssini-Huygens

    NASA Voyager 2
    NASA/Voyager

    “The F ring is a narrow, lumpy feature made entirely of water ice that lies just outside the broad, luminous rings A, B, and C,” notes French. “It has bright spots. But it has fundamentally changed its appearance since the time of Voyager. Today, there are fewer of the very bright lumps.”

    The bright spots come and go over the course of hours or days, a mystery that the two SETI Institute astronomers think they have solved.

    “We believe the most luminous knots occur when tiny moons, no bigger than a large mountain, collide with the densest part of the ring,” says French. “These moons are small enough to coalesce and then break apart in short order.”

    The F ring is at a special place in the ring system, at a distance known as the Roche limit, named for French astronomer Edouard Roche who first pointed out that if a moon orbits too close to a planet, the difference in gravitational tug on its near and far side can tear it apart. This happens at a distance dependent on the mass of the planet, and in the case of Saturn, happens to be at the location of the F ring. Consequently, material here is caught between the yin and yang of forming small moons, and having them pulled apart. The moons in question are typically no more than 3 miles (5 km) in size, and consequently can come together quickly.

    This chaotic region is given additional stir by Prometheus, a moon that’s roughly 60 miles (100 km) in size that orbits just inside the F ring. Every 17 years, Prometheus aligns with the F ring in a way that emphasizes its gravitational influence on the ring’s particles, precipitating the formation of the mini-moons, or moonlets.

    “These newborn moonlets will repeatedly crash through the F ring, like bumper cars, producing bright clumps as they careen through lanes of material,” says Showalter. “But this is self-destructive behavior, and the moons – being just at the Roche limit – are barely stable and quickly fragmented.”

    This scenario can explain the rapid variation in the number of bright clumps in the F ring, but is it true? If the periodic influence of Prometheus is causing the waxing and waning of the clumps, then there should be an increase in their prevalence over the next few years, a prediction that the astronomers will be checking with Cassini data.

    In addition to the drama of moons that come and go over less than a human lifetime, studies of the ring system give insight into how solar systems in general are built.

    “The sort of processes going on around Saturn are very similar to those that took place here 4.6 billion years ago, when the Earth and the other large planets were formed,” notes French. “It’s an important process to understand.”

    This research was published in the online edition of the journal Icarus on July 15, 2014.

    Link to paper: http://www.sciencedirect.com/science/article/pii/S0019103514003625

    The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency, and the Italian Space Agency. The mission is managed by NASA’s Jet Propulsion Laboratory, Pasadena, California.

    See the full article here.

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 7:42 pm on September 1, 2014 Permalink | Reply
    Tags: , , , , , SETI Institute   

    Seth Shostak of SETI Institute at his Eloquent Best. 


    SETI Institute

    Seth Shostak. ’nuff said.

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 7:47 am on August 29, 2014 Permalink | Reply
    Tags: , , , , , SETI Institute   

    From SETI Institute: “How Can We Find Tiny Particles In Exoplanet Atmospheres?” 


    SETI Institute

    August 28 2014

    Adrian Brown
    SETI Institute
    E-mail: abrown@seti.org
    Tel: +1 650 960-4223

    Seth Shostak, Media Contact
    SETI Institute
    E-mail: seth@seti.org
    Tel: +1 650 960-4530

    It may seem like magic, but astronomers have worked out a scheme that will allow them to detect and measure particles ten times smaller than the width of a human hair, even at many light-years distance. They can do this by observing a blue tint in the light from far-off objects caused by the way in which small particles, no more than a micron in size (one-thousandth of a millimeter) scatter light.

    disc
    Credit: NASA/JPL

    In a recent study conducted by Adrian Brown of the SETI Institute, the broad outlines of this process have been worked out. “The effect is related to a familiar phenomenon known as Rayleigh scattering,” says Brown. “And that’s something everyone has seen: it makes the sky blue.”

    By analyzing spectroscopic data from the Cassini orbiter, the Mars Reconnaissance Orbiter, and ground-based telescopes, Brown has managed to document this blue enhancement in many nearby objects, including the rings of Saturn, its moons Dione and Epimetheus, Mars, the moon, and the tail of Comet 17P/Holmes.

    NASA Cassini Spacecraft
    NASA/Cassini

    mars
    NASA/ Mars Reconnaissance Orbiter

    Brown’s theoretical study of the phenomenon showed that the spectral bluing occurs any time sufficiently small objects are in our field of view. In his studies, he considered particles between 0.1 and 1.0 microns in size. A human hair is roughly 17 microns in diameter.

    So why isn’t the ground beneath our feet blue? Brown’s research suggests that the effect is quickly damped by other objects that, despite being of the same type, have different size distributions. The effect depends on having many particles within a narrow range of size. In addition, too many tiny particles might turn objects white. As an example of the latter, a glass of milk appears white because of multiple scattering from fat globules, and clouds appear white due to multiple scattering from water aerosols (droplets).

    Consequently, the bluing effect requires some process that forms lots of particles of almost identical size. Simply establishing that such a process is present can give researchers clues to the history and conditions on extraterrestrial bodies.

    “This technique would, in principle, allow us to find extremely tiny particles in the atmospheres or on the surfaces of exoplanets that are tens or thousands of light-years away,” Brown says.

    The research was published in the September 1 issue of Icarus.

    See the full article here.

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 7:26 am on August 22, 2014 Permalink | Reply
    Tags: , , , , , , SETI Institute,   

    From Seth Shostak via SPACE.com: “6 Most Likely Places for Alien Life in the Solar System” 

    space-dot-com logo

    SPACE.com

    SETI Seth Shostak
    Seth Shostak, Senior Astronomer, SETI Institute

    We still don’t have hard evidence for any life that’s not of this Earth, but across our solar system there are some tantalizing possibilities for primitive life to find a haven. Some moons of Jupiter and Saturn are intriguing, and there’s also the chance for some surprises somewhere on Mars.

    Here are my top six candidates for the best spots to search for primitive alien life in our solar system.

    FIRST STOP: Enceladus

    encl

    In 2005, NASA’s Cassini spacecraft photographed geysers of frozen water spewing from cracks in Enceladus’ southern hemisphere. Scientists think reservoirs of liquid water lie beneath the frozen surface and are warmed by gravitational interactions between Enceladus and other moons around Saturn. The necessities for life are there, and maybe Enceladans are as well. The moon has a mean radius of 156.6 miles (252.1 km).

    NASA Cassini Spacecraft
    NASA/Cassini

    NEXT STOP: Mars

    mars

    Mars remains perennially popular for those hunting for otherworldly protoplasm. Particularly intriguing are the dark stripes that appear in the Martian summertime at Horowitz crater. These are likely to be salty meltwater only inches beneath Mars’ dusty epidermis. A relatively simple probe could sample this muddy environment. Mars has a diameter of about 4,212 miles (6,779 km)

    NEXT STOP: Titan

    tit

    Titan is Saturn’s largest moon and the only world in the solar system (besides Earth) known to sport liquid lakes. These are lakes of ethane and methane — liquid natural gas — endlessly topped up by hydrocarbon rain. Despite the odd ingredients and Titan’s gelid temperatures (minus 290 Fahrenheit, or minus 179 Celsius), it is a world where chemistry’s a happening enterprise. Titan possesses diameter of 3,200 miles (5,150 km).

    NEXT STOP: Europa

    europa

    Many would grant Europa a higher potential-life rating than I have, since there’s probably more liquid water here than in all of Earth’s oceans. The downside is that Europa’s vast, salty seas lie beneath roughly 10 miles of ice. Not only is it difficult get a probe beneath this icy armor, but Europa’s oceans are darker than a cave — which means photosynthesis won’t work. However, something down there may subsist on geothermal heat or complex molecules from the surface. Europa possesses a mean radius of 970 miles (1,560.8 km).

    NEXT STOP: Venus, the Hellish Planet

    venus

    A surprise entry in the exobiology sweepstakes is our sister planet, Venus, with its scorching surface temperatures (850 F, or 454 C). The planet is generally assumed to be as sterile as a boiled mule.

    But planetary scientist David Grinspoon, astrobiology curator at the Denver Museum of Nature and Science, points out that high in the Venusian atmosphere temperatures are refreshingly tolerable. Atmospheric sulfur dioxide and carbon monoxide might serve as food for floating microbes. Venus is 7,521 miles wide (12,104 km).

    NEXT STOP: Callisto and Ganymede of Jupiter

    calisto

    I considered these two moons of Jupiter together, as I feel they’re neck-and-neck candidates for biology. Like their more celebrated neighbor Europa, Ganymede and Callisto may have buried, liquid oceans. However, in the case of these two satellite siblings, briny deeps would underlie at least 60 miles (100 km) of rock. Finding inhabitants here is a shovel-ready project for our grandkids. Callisto has a diameter of more than 2,985 miles (4,800 km); Ganymede’s diameter is 3,270 miles (5,262.4 km).

    See the full article here.


    SETI Institute

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 11:44 am on August 20, 2014 Permalink | Reply
    Tags: , , , , , SETI Institute   

    From Seth Shostak of SETI Institute via Huff Post: “Forget Space Travel: Build This Telescope” 


    SETI Institute

    SETI Seth Shostak
    Seth Shostak,Senior Astronomer, SETI Institute

    The first telescopes were toys, charming amusements. Sure, there were a few practical uses, such as observing distant ships coming into harbor. Doing so allowed merchants to hurry down to the docks ahead of their telescope-free competitors, and snag all the better goods. Military commanders occasionally found telescopes handy as well. And when they weren’t being used for commerce or conflict, these simple devices were undoubtedly helpful for checking out the personal parameters of careless neighbors.

    In 1609, Galileo turned a telescope skyward — a move that no one else seems to have considered. His instruments had lenses about the size of a half-dollar coin, and magnifications that were only about 20 times. Their simple optics had more aberrations than Vlad the Impaler.

    Today, you wouldn’t give a kid a telescope this lousy, unless you’re inspiring her to forsake science in favor of a more lucrative occupation, like starching shirts. But these low-grade constructions were good enough to see the bigger moons of Jupiter, the craters of the moon, and stars making up the Milky Way. They were, despite their pitiful specifications, arguably the most important astronomical telescopes of all time.

    Modern researchers would find Galileo’s ‘scopes useful only for batting Whiffle balls. They’ve moved on to bigger and better, and today are building some truly impressive instruments: a new generation of titanic telescopes that sport primary mirrors larger than tennis courts.

    ESO E-ELT
    ESO E-ELT

    Thirty Meter Telescope
    Thirty Meter Telescope.

    Giant Magellan Telescope
    Giant Magellan Telescope

    These will snag a million times as much light as Galileo’s instrument, which is really the motivation for their construction. But, thanks to an ability to undo a lot of the distortions caused by Earth’s shuddering atmosphere [adaptive optices, active optics], these new outsized ‘scopes will be about as hawkeyed as the famed Hubble instrument — able to see detail at a level of about 0.1 seconds of arc. That’s enough to just make out a dime a dozen miles away.

    exo
    Exoplanet

    Impressive, yes, but no one cares about examining far-off dimes. What about inspecting worlds around other stars, the so-called exoplanets that dominate a lot of astronomy news these days? Well, with these new giant telescopes, any Earth-size exoplanet would be smaller than one pixel in size. It would be a thoroughly unresolved pinpoint of light.

    Useful, but not entirely gratifying.

    I think it’s fair to say that, given your ‘druthers, you’d want an instrument that could map exoplanets in the kind of detail you get with Google Earth, with enough resolution to actually see the Great Wall of the Klingons, in case they’ve built one.

    Could we construct such a telescope … ever?

    Here’s what it takes: Let’s assume that all the alien worlds you wish to view up close and personal are no more than 100 light-years away. That might sound pretty cramped to astronomy nerds, but there are probably several hundred thousand planets within that distance – enough to gratify even the most spirited voyeur.

    At 100 light-years, something the size of a Honda Accord — which I propose as a standard imaging test object — subtends an angle of a half-trillionth of a second of arc. In case that number doesn’t speak to you, it’s roughly the apparent size of a cell nucleus on Pluto, as viewed from Earth.

    You will not be stunned to hear that resolving something that minuscule requires a telescope with a honking size. At ordinary optical wavelengths, “honking” works out to a mirror 100 million miles across. You could nicely fit a reflector that large between the orbits of Mercury and Mars. Big, yes, but it would permit you to examine exoplanets in incredible detail.

    The down side is obvious: Who could ever construct such a thing? Well, fortunately, no one has to. Instead, you could field a phalanx of small mirrors in space, spread out over 100 million miles. They wouldn’t even have to maintain a fixed pattern, as long as you could accurately keep track of their relative positions.

    No huge mirror: just a manageable number of small ones. The ability to see detail would be the same. And, of course, it’s a heck of a lot easier to turn an array of small instruments to different places on the sky than to pivot a 100 million-mile monstrosity.

    Of course, there are a few small problems of principle here. You need to collect enough light to make the imaging possible, and correct for the fact that the target exoplanet is both rotating and sliding across the sky. Both problems can be dealt with, at least in theory — which suggests that they can also be dealt with in practice, given sufficient effort.

    But think of the implications. There’s a lot of talk about interstellar travel, and whether we will ever be capable of rocketing to other stars. It’s a tough thing to do.

    However, if the type of telescope described here can be built, then the tyranny of distance is vanquished. You can forget deep space probes and their long travel times. We could explore alien worlds in the comfort of our own homes, as our laptops scroll and zoom through data sets collected by a mammoth, space-based telescope array.

    It would also, quite obviously, be a whole new way to search for extraterrestrial life … just look for it, or its artifacts (like cities).

    This is, to my mind, the ultimate telescope. It’s not for our generation to build, or even the next two. But after that …?

    See the full article here.

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 2:57 pm on August 19, 2014 Permalink | Reply
    Tags: , , SETI Institute   

    From The New York Times: “The Intelligent-Life Lottery” 

    New York Times

    The New York Times

    AUG. 18, 2014
    George Johnson

    Almost 20 years ago, in the pages of an obscure publication called Bioastronomy News, two giants in the world of science argued over whether SETI — the Search for Extraterrestrial Intelligence — had a chance of succeeding. Carl Sagan, as eloquent as ever, gave his standard answer. With billions of stars in our galaxy, there must be other civilizations capable of transmitting electromagnetic waves. By scouring the sky with radio telescopes, we just might intercept a signal.

    But Sagan’s opponent, the great evolutionary biologist Ernst Mayr, thought the chances were close to zero. Against Sagan’s stellar billions, he posed his own astronomical numbers: Of the billions of species that have lived and died since life began, only one — Homo sapiens — had developed a science, a technology, and the curiosity to explore the stars. And that took about 3.5 billion years of evolution. High intelligence, Mayr concluded, must be extremely rare, here or anywhere. Earth’s most abundant life form is unicellular slime.

    Since the debate with Sagan, more than 1,700 planets have been discovered beyond the solar system — 700 just this year. Astronomers recently estimated that one of every five sunlike stars in the Milky Way might be orbited by a world capable of supporting some kind of life.

    That is about 40 billion potential habitats. But Mayr, who died in 2005 at the age of 100, probably wouldn’t have been impressed. By his reckoning, the odds would still be very low for anything much beyond slime worlds. No evidence has yet emerged to prove him wrong.

    Maybe we’re just not looking hard enough. Since SETI began in the early 1960s, it has struggled for the money it takes to monitor even a fraction of the sky. In an online essay for The Conversation last week, Seth Shostak, the senior astronomer at the SETI Institute, lamented how little has been allocated for the quest — just a fraction of NASA’s budget.

    “If you don’t ante up,” he wrote, “you will never win the jackpot. And that is a question of will.”

    Three years ago, SETI’s Allen Telescope Array in Northern California ran out of money and was closed for a while. Earlier this month, it was threatened by wildfire — another reminder of the precariousness of the search.

    Allen Telescope Array
    Allen Telescope Array

    It has been more than 3.5 billion years since the first simple cells arose, and it took another billion years or so for some of them to evolve and join symbiotically into primitive multicellular organisms. These biochemical hives, through random mutations and the blind explorations of evolution, eventually led to creatures with the ability to remember, to anticipate and — at least in the case of humans — to wonder what it is all about.

    Every step was a matter of happenstance, like the arbitrary combination of numbers — 3, 12, 31, 34, 51 and 24 — that qualified a Powerball winner for a $90 million prize this month. Some unknowing soul happened to enter a convenience store in Rifle, Colo., and — maybe with change from buying gasoline or a microwaved burrito — purchase a ticket just as the machine was about to spit out those particular numbers.

    According to the Powerball website, the chance of winning the grand prize is about one in 175 million. The emergence of humanlike intelligence, as Mayr saw it, was about as likely as if a Powerball winner kept buying tickets and — round after round — hit a bigger jackpot each time. One unlikelihood is piled on another, yielding a vanishingly rare event.

    In one of my favorite books, “Wonderful Life,” Stephen Jay Gould celebrated what he saw as the unlikelihood of our existence. Going further than Mayr, he ventured that if a slithering creature called Pikaia gracilens had not survived the Cambrian extinction, about half a billion years ago, the entire phylum called Chordata, which includes us vertebrates, might never have existed.

    Gould took his title from the Frank Capra movie in which George Bailey gets to see what the world might have been like without him — idyllic Bedford Falls is replaced by a bleak, Dickensian Pottersville.

    For Gould, the fact that any of our ancestral species might easily have been nipped in the bud should fill us “with a new kind of amazement” and “a frisson for the improbability of the event” — a fellow agnostic’s version of an epiphany.

    “We came this close (put your thumb about a millimeter away from your index finger), thousands and thousands of times, to erasure by the veering of history down another sensible channel,” he wrote. “Replay the tape a million times,” he proposed, “and I doubt that anything like Homo sapiens would ever evolve again. It is, indeed, a wonderful life.”

    Other biologists have disputed Gould’s conclusion. In the course of evolution, eyes and multicellularity arose independently a number of times. So why not vertebrae, spinal cords and brains? The more bags of tricks an organism has at its disposal, the greater its survival power may be. A biological arms race ensues, with complexity ratcheted ever higher.

    But those occasions are rare. Most organisms, as Daniel Dennett put it in “Darwin’s Dangerous Idea,” seem to have “hit upon a relatively simple solution to life’s problems at the outset and, having nailed it a billion years ago, have had nothing much to do in the way of design work ever since.” Our appreciation of complexity, he wrote, “may well be just an aesthetic preference.”

    In Five Billion Years of Solitude, by Lee Billings, published last year, the author visited Frank Drake, one of the SETI pioneers.

    “Right now, there could well be messages from the stars flying right through this room,” Dr. Drake told him. “Through you and me. And if we had the right receiver set up properly, we could detect them. I still get chills thinking about it.”

    He knew the odds of tuning in — at just the right frequency at the right place and time — were slim. But that just meant we needed to expand the search.

    “We’ve been playing the lottery only using a few tickets,” he said.

    See the full article here.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 343 other followers

%d bloggers like this: