Tagged: Sandia National laboratories Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:12 am on August 19, 2014 Permalink | Reply
    Tags: , , Sandia National laboratories, The Brain   

    From Sandia Lab: “Watching neurons fire from a front-row seat” 


    Sandia Lab

    July 28, 2014
    Sue Holmes, sholmes@sandia.gov, (505) 844-6362

    They are with us every moment of every day, controlling every action we make, from the breath we breathe to the words we speak, and yet there is still a lot we don’t know about the cells that make up our nervous systems. When things go awry and nerve cells don’t communicate as they should, the consequences can be devastating. Speech can be slurred, muscles stop working on command and memories can be lost forever.

    Better understanding of how neurons and brains work could lead to new prevention, diagnostic and treatment techniques, but the brain is complex and difficult to study. If you were to hold your brain, you would likely marvel at how much it feels and moves like Jell-O. This tissue is composed of neurons and other supporting cells with tiny cell bodies, which generate electrical signals that determine how the brain and the nervous system function.

    Those signals can be recorded and measured if a suitably small electrode is in the vicinity, but that presents challenges. Brain tissue is always moving in response to the body’s movement and breathing patterns. In addition, the nerve tissue is incredibly sensitive. If disrupted by a foreign body, the cells trigger an immune response to encapsulate the intruder and barricade it from the electrical signal it’s trying to capture and understand.

    Working to develop intelligent neural interfaces

    man
    Sandia National Laboratories researcher Murat Okandan holds one of the microscale actuators that could lead to better understanding of brain function, which could help with prevention, diagnostic and treatment techniques for brain disorders. (Photo by Randy Montoya)

    That challenge led Jit Muthuswamy, an associate professor of biomedical engineering at Arizona State University, Tempe (ASU), to pursue a robotic electrode system that would seek and maintain contact with neurons of interest autonomously in a subject going through normal behavioral routines. That led him to Sandia National Laboratories.

    “We are working to develop chronic, reliable, intelligent neural interfaces that will communicate with single neurons in a variety of applications, some of which are emerging and others that are closer to market,” Muthuswamy said. “Applications like brain prostheses are critically dependent on us being able to interface and communicate with single neurons reliably over the course of a patient’s life. Such reliable neural interfaces are also critical to help us understand the dynamic changes in the wiring diagram of the brain.”

    Key to the success of that robotic approach are the microscale actuators needed to reposition the electrodes. This led Muthuswamy in 2000 to seek out Sandia engineer Murat Okandan and the unique microsystems engineering capabilities available at Sandia’s Microsystems and Engineering Sciences Applications facility.

    “The process flow we use to make these isn’t available anywhere else in the world, so the level of complexity and mechanical design space we had to design and fabricate these was immensely larger than what other researchers might have,” Okandan said. He has been working with Muthuswamy’s research team since that initial contact to find a suitable method to track individual neurons as they fire.

    Earlier probes were made of a sharpened metal wire inserted in the tissue. The closer the probe is to the neuron, the stronger the signal, so experimenters ideally try to get as close as possible without disrupting surrounding tissue. The problem is that even a thin wire is too big; such a probe can take measurements around the neuron, but is far too cumbersome to be reliable over time.

    Equally important is capturing the signals from an awake animal. Given their size and rigidity, current probes aren’t suited to gather recordings as the animal responds to its environment. Those units aren’t self-contained, so they keep the animals from moving around freely.

    Microscale key to capturing signals from awake, moving animals

    Microscale actuators and microelectrodes are critical to addressing both of those issues so probes can interact with individual nerve cells while doing minimal damage to surrounding tissue. The microscale actuators and associated packaging system developed at ASU and Sandia let a probe move autonomously in and out of the areas surrounding the cell, collecting measurements while compensating for any movement in the neuron or brain tissue.

    About the size of a thumbnail, the self-contained unit has three microelectrodes and associated micro actuators. When a current runs through the thermal actuator, it expands and pushes the microelectrodes outward over the edge of the unit, which is flat to fit against the tissue. Because the actuator is so small, it can be heated to several hundred degrees Celsius and cooled again 1,000 times per second. It takes 540 cycles to fully extend the probe, but that can be done quickly – in a second or less.

    The probes were implanted in the somatosensory cortex of rodents and rigorously tested in numerous experiments, both in acute and long-term conditions, Muthuswamy said. Animal procedures were carried out with the approval of ASU’s Institute of Animal Care and Use Committee, and experiments were done in accordance with National Institute of Health guidelines.

    Muthuswamy said the neural probes demonstrated significant improvement in the quality and reliability of the signals when the probes were moved with precision using the Sandia microactuators in response to loss of neural signals. Further, he said, adding autonomous closed-loop controls to compensate for microscale perturbations in brain tissue significantly improved the stability of neural recordings from the brain.

    Scale of this system is unique

    Thermal actuators have been used for years at Sandia and elsewhere, but the scale of this system is unique. “The idea that we could build this system to achieve multiple millimeters of total displacement out of a micron-scaled device was a significant milestone,” said Sandia engineer Michael Baker, who designed the actuator. “We used electrostatic actuators in the past, but the thermal actuator provides much higher force, which is needed to move the probe in tissue.”

    The microelectrodes are made of highly conductive polysilicon, which the team discovered has a number of advantages. It is almost metal-like in its conductivity, but durable enough for millions of cycles. It provides a signal-to-noise ratio much greater than previous wire probes and provides high-quality measurement signals.

    Muthuswamy and Okandan currently are seeking to produce richer data with resolution in the submicron range to be able to go inside cells and take measurements there. They also are working on stacking the existing neural probe chips and decreasing the spaces between probes. Muthuswamy’s Neural Microsystems lab at ASU has developed a unique stacking approach for creating three-dimensional arrays of actuated microelectrodes.

    “By building a three-dimensional array, we would have access to significantly more information, rather than just a slice,” Okandan said. “We’re very encouraged by the progress we have made, and are looking forward to building on that progress.”

    See the full article here.

    Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.
    i1
    i2
    i3

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 3:13 pm on July 28, 2014 Permalink | Reply
    Tags: , , Sandia National laboratories   

    From Sandia Lab: “Watching neurons fire from a front-row seat” 


    Sandia Lab

    July 28, 2014
    Sue Holmes, sholmes@sandia.gov, (505) 844-6362

    They are with us every moment of every day, controlling every action we make, from the breath we breathe to the words we speak, and yet there is still a lot we don’t know about the cells that make up our nervous systems. When things go awry and nerve cells don’t communicate as they should, the consequences can be devastating. Speech can be slurred, muscles stop working on command and memories can be lost forever.

    Better understanding of how neurons and brains work could lead to new prevention, diagnostic and treatment techniques, but the brain is complex and difficult to study. If you were to hold your brain, you would likely marvel at how much it feels and moves like Jell-O. This tissue is composed of neurons and other supporting cells with tiny cell bodies, which generate electrical signals that determine how the brain and the nervous system function.

    Those signals can be recorded and measured if a suitably small electrode is in the vicinity, but that presents challenges. Brain tissue is always moving in response to the body’s movement and breathing patterns. In addition, the nerve tissue is incredibly sensitive. If disrupted by a foreign body, the cells trigger an immune response to encapsulate the intruder and barricade it from the electrical signal it’s trying to capture and understand.

    Working to develop intelligent neural interfaces

    man
    Sandia National Laboratories researcher Murat Okandan holds one of the microscale actuators that could lead to better understanding of brain function, which could help with prevention, diagnostic and treatment techniques for brain disorders. (Photo by Randy Montoya) Click on the thumbnail for a high-resolution image

    That challenge led Jit Muthuswamy, an associate professor of biomedical engineering at Arizona State University, Tempe (ASU), to pursue a robotic electrode system that would seek and maintain contact with neurons of interest autonomously in a subject going through normal behavioral routines. That led him to Sandia National Laboratories.

    “We are working to develop chronic, reliable, intelligent neural interfaces that will communicate with single neurons in a variety of applications, some of which are emerging and others that are closer to market,” Muthuswamy said. “Applications like brain prostheses are critically dependent on us being able to interface and communicate with single neurons reliably over the course of a patient’s life. Such reliable neural interfaces are also critical to help us understand the dynamic changes in the wiring diagram of the brain.”

    Key to the success of that robotic approach are the microscale actuators needed to reposition the electrodes. This led Muthuswamy in 2000 to seek out Sandia engineer Murat Okandan and the unique microsystems engineering capabilities available at Sandia’s Microsystems and Engineering Sciences Applications facility.

    “The process flow we use to make these isn’t available anywhere else in the world, so the level of complexity and mechanical design space we had to design and fabricate these was immensely larger than what other researchers might have,” Okandan said. He has been working with Muthuswamy’s research team since that initial contact to find a suitable method to track individual neurons as they fire.

    Earlier probes were made of a sharpened metal wire inserted in the tissue. The closer the probe is to the neuron, the stronger the signal, so experimenters ideally try to get as close as possible without disrupting surrounding tissue. The problem is that even a thin wire is too big; such a probe can take measurements around the neuron, but is far too cumbersome to be reliable over time.

    Equally important is capturing the signals from an awake animal. Given their size and rigidity, current probes aren’t suited to gather recordings as the animal responds to its environment. Those units aren’t self-contained, so they keep the animals from moving around freely.

    Microscale key to capturing signals from awake, moving animals

    Microscale actuators and microelectrodes are critical to addressing both of those issues so probes can interact with individual nerve cells while doing minimal damage to surrounding tissue. The microscale actuators and associated packaging system developed at ASU and Sandia let a probe move autonomously in and out of the areas surrounding the cell, collecting measurements while compensating for any movement in the neuron or brain tissue.

    About the size of a thumbnail, the self-contained unit has three microelectrodes and associated micro actuators. When a current runs through the thermal actuator, it expands and pushes the microelectrodes outward over the edge of the unit, which is flat to fit against the tissue. Because the actuator is so small, it can be heated to several hundred degrees Celsius and cooled again 1,000 times per second. It takes 540 cycles to fully extend the probe, but that can be done quickly – in a second or less.

    The probes were implanted in the somatosensory cortex of rodents and rigorously tested in numerous experiments, both in acute and long-term conditions, Muthuswamy said. Animal procedures were carried out with the approval of ASU’s Institute of Animal Care and Use Committee, and experiments were done in accordance with National Institute of Health guidelines.

    Muthuswamy said the neural probes demonstrated significant improvement in the quality and reliability of the signals when the probes were moved with precision using the Sandia microactuators in response to loss of neural signals. Further, he said, adding autonomous closed-loop controls to compensate for microscale perturbations in brain tissue significantly improved the stability of neural recordings from the brain.

    Scale of this system is unique

    Thermal actuators have been used for years at Sandia and elsewhere, but the scale of this system is unique. “The idea that we could build this system to achieve multiple millimeters of total displacement out of a micron-scaled device was a significant milestone,” said Sandia engineer Michael Baker, who designed the actuator. “We used electrostatic actuators in the past, but the thermal actuator provides much higher force, which is needed to move the probe in tissue.”

    The microelectrodes are made of highly conductive polysilicon, which the team discovered has a number of advantages. It is almost metal-like in its conductivity, but durable enough for millions of cycles. It provides a signal-to-noise ratio much greater than previous wire probes and provides high-quality measurement signals.

    Muthuswamy and Okandan currently are seeking to produce richer data with resolution in the submicron range to be able to go inside cells and take measurements there. They also are working on stacking the existing neural probe chips and decreasing the spaces between probes. Muthuswamy’s Neural Microsystems lab at ASU has developed a unique stacking approach for creating three-dimensional arrays of actuated microelectrodes.

    “By building a three-dimensional array, we would have access to significantly more information, rather than just a slice,” Okandan said. “We’re very encouraged by the progress we have made, and are looking forward to building on that progress.”

    See the full article here.

    Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.
    i1
    i2
    i3


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 8:12 am on June 16, 2014 Permalink | Reply
    Tags: , , Sandia National laboratories   

    From Sandia Lab: “Moly 99 reactor using Sandia design could lead to U.S. supply of isotope to track disease “ 


    Sandia Lab

    June 16, 2014
    Nancy Salem

    An Albuquerque startup company has licensed a Sandia National Laboratories technology that offers a way to make molybdenum-99, a key radioactive isotope needed for diagnostic imaging in nuclear medicine, in the United States. Known as moly 99, it is made in aging nuclear reactors outside the country, and concerns about future shortages have been in the news for years.

    Eden Radioisotopes LLC was founded last year and licensed the Sandia moly 99 reactor conceptual design in November. It hopes to build the first U.S. reactor for making the isotope and become a global supplier.

    two
    Dick Coats, right, Eden Radioisotopes’ chief technology officer and a retired Sandia National Laboratories researcher, talks to Sandia nuclear engineer John Ford at the Annular Core Research Reactor, where they helped develop a molybdenum-99 reactor concept in the 1990s. Eden recently licensed the technology with the goal of producing a U.S. supply of moly 99 for use in nuclear medicine. (Photo by Randy Montoya)

    “One of the pressing reasons for starting this company is the moly 99 shortages that are imminent in the next few years,” said Chris Wagner, Eden’s chief operating officer and a 30-year veteran of the medical-imaging industry. “We really feel this is a critical time period to enter the market and supply replacement capacity for what is going offline.”

    Moly 99 is the precursor for the radioactive isotope technetium-99m, used extensively in medical diagnostic tests because it emits a gamma ray that can be tracked in the body, letting physicians create images of the spread of a disease. And it decays quickly so patients are exposed to little radiation.

    Moly 99 is made in commercial nuclear reactors using weapon-grade uranium and 50 to 100 megawatts of power. Neutrons bombard the uranium-235 target. The uranium fissions and produces a moly 99 atom about 6 percent of the time. Moly 99 is extracted from the reactor through a chemical process in a hot-cell facility and used by radiopharmaceutical manufacturers worldwide to produce moly 99/technetium-99m generators. The moly 99, with a 66-hour half-life, decays to technetium-99m, with a six-hour half-life. The generators are shipped to hospitals, clinics and radiopharmacies, which make individual unit doses for use in a wide variety of patient-imaging procedures.

    “It’s a $4 billion a year market,” Wagner said. “There are 30 million diagnostic procedures done worldwide each year, and 80 percent use technetium-99m. More than 50 percent of the procedures are done in the United States, and 60 percent of those are cardiac-related. This issue is very important to U.S. health care because there is no domestic production supplier on U.S. soil.”

    Unreliable reactors cause moly shortages

    The world’s five primary moly 99 production reactors are often closed for repairs, causing periodic shortages that can last months, Wagner said. Two of the largest could either stop producing moly 99 or be decommissioned in the next 10 years. “They represent more than 60 percent of the global supply,” Wagner said. “There is a new reactor due in France, but even if the two go offline and new replacement capacity comes on, Eden still predicts a 20 to 30 percent global shortage to meet today’s demand, and greater future shortages as demand rises.”

    A search has been on for a number of years for a way to make moly 99 in the United States without using weapon-grade uranium. Several companies have explored new kinds of reactors and different methods to produce the isotope but none are in commercial production. “Eden would be the first reactor in the U.S. specific for medical isotope production,” Wagner said. “We feel that science wise, this has the most potential for success in the market.”

    Dick Coats, Eden’s chief technology officer, is a retired Sandia Labs researcher who helped develop the moly 99 reactor concept in the 1990s. Based on technology developed in the Department of Energy-funded Sandia medical isotope production program of that era, the team created a reactor concept tailored to the business of producing moly 99. “This reactor is very small, less than 2 megawatts in power, about a foot-and-a-half in diameter and about the same height, but very efficient,” Coats said.

    The reactor sits in a pool of cooling water 28 to 30 feet deep. It has an all-target core of low-enriched uranium — less than 20 percent U-235 — fuel elements. “The targets are irradiated and every one can be pulled out and processed for moly 99. The entire core is available for moly 99 production,” Coats said. “Every fission that occurs produces moly. The reactor’s only purpose is medical isotope production. This is what is new and unique. Nobody thought about approaching it that way.”

    Eden reactor could meet demand

    Sandia’s Ed Parma, who was on the original team, said the world demand for moly 99 can be met with a small, all-target reactor processed every week. He said larger reactors aren’t cost effective because they use so much power to drive the targets. “They’re using 150 megawatts to drive a 1 megawatt system,” he said. “When you add in fuel costs, operations, maintenance, it’s hard to make money.”

    He said there has never been a reactor system designed just to make moly 99. “They all started as something else,” he said. “Our design is scaled down just for the production of moly. The reactor is only the size you need. It’s more efficient and economically viable.”

    Eden is raising investment capital to meet initial costs through production, estimated at about $75 million.

    It hopes to be in production in about four years. During that time it will build the reactor and facilities and seek a license from the Nuclear Regulatory Commission, and Food and Drug Administration approval of the manufacturing process. Wagner said the preferred location is Hobbs, N.M., which has a labor force familiar with nuclear work due to the nearby URENCO USA uranium enrichment facility. Eden would employ about 140 people.

    “Our intent is not to make something just for the United States,” Wagner said. “We will be U.S.-based so U.S. health care has domestic coverage. But our production capacity will be enough to meet the entire global demand.”

    Business team has nuclear medicine experience

    On the business side, two companies provide 100 percent of U.S. production and distribution of moly 99/technetium-99m generators: Mallinckrodt Pharmaceuticals in Missouri and Lantheus Medical Imaging in Massachusetts. Wagner is a former Mallinckrodt vice president and Eden advisory board member Peter Card is a former Lantheus vice president. On the technical side, Coats works at Eden with Milt Vernon, another retired Sandia researcher who worked on the technology. “We have all the bases covered to be successful,” Wagner said.

    Bob Westervelt of Sandia’s licensing group said the lab pursued an exclusive license for the technology. “We didn’t want multiple people trying to build it,” he said. “We wanted one company that could actually commercialize it.”

    The licensing department advertised the opportunity last summer, and interested parties had to demonstrate they had the financial resources and technical know-how to build the reactor and get regulatory and environmental approvals.

    “There were 10 responses and only one, Eden, came with a full package proposal,” Westervelt said. Eden was given an exclusive license for the term of the patent, which is pending.

    “It’s very exciting to be part of a project that could be commercialized,” Parma said. “I think this is the future. There’s no doubt in my mind.”

    See the full article here.

    Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 7:31 am on May 15, 2014 Permalink | Reply
    Tags: , , , Sandia National laboratories   

    From Sandia Lab: “The brain: key to a better computer “ 

    Sandia Lab

    May 15, 2014
    Sue Holmes, sholmes@sandia.gov, (505) 844-6362

    Your brain is incredibly well-suited to handling whatever comes along, plus it’s tough and operates on little energy. Those attributes — dealing with real-world situations, resiliency and energy efficiency — are precisely what might be possible with neuro-inspired computing.

    “Today’s computers are wonderful at bookkeeping and solving scientific problems often described by partial differential equations, but they’re horrible at just using common sense, seeing new patterns, dealing with ambiguity and making smart decisions,” said John Wagner, cognitive sciences manager at Sandia National Laboratories.

    In contrast, the brain is “proof that you can have a formidable computer that never stops learning, operates on the power of a 20-watt light bulb and can last a hundred years,” he said.

    Although brain-inspired computing is in its infancy, Sandia has included it in a long-term research project whose goal is future computer systems. Neuro-inspired computing seeks to develop algorithms that would run on computers that function more like a brain than a conventional computer.

    brain
    Sandia National Laboratories researchers are drawing inspiration from neurons in the brain, such as these green fluorescent protein-labeled neurons in a mouse neocortex, with the aim of developing neuro-inspired computing systems. Although brain-inspired computing is in its infancy, Sandia has included it in a long-term research project whose goal is future computer systems. (Photo by Frances S. Chance, courtesy of Janelia Farm Research Campus)

    “We’re evaluating what the benefits would be of a system like this and considering what types of devices and architectures would be needed to enable it,” said microsystems researcher Murat Okandan.

    Sandia’s facilities and past research make the laboratories a natural for this work: its Microsystems & Engineering Science Applications (MESA) complex, a fabrication facility that can build massively interconnected computational elements; its computer architecture group and its long history of designing and building supercomputers; strong cognitive neurosciences research, with expertise in such areas as brain-inspired algorithms; and its decades of work on nationally important problems, Wagner said.

    New technology often is spurred by a particular need. Early conventional computing grew from the need for neutron diffusion simulations and weather prediction. Today, big data problems and remote autonomous and semiautonomous systems need far more computational power and better energy efficiency.

    Neuro-inspired computers would be ideal for robots, remote sensors

    Neuro-inspired computers would be ideal for operating such systems as unmanned aerial vehicles, robots and remote sensors, and solving big data problems, such as those the cyber world faces and analyzing transactions whizzing around the world, “looking at what’s going where and for what reason,” Okandan said.

    Such computers would be able to detect patterns and anomalies, sensing what fits and what doesn’t. Perhaps the computer wouldn’t find the entire answer, but could wade through enormous amounts of data to point a human analyst in the right direction, Okandan said.

    “If you do conventional computing, you are doing exact computations and exact computations only. If you’re looking at neurocomputation, you are looking at history, or memories in your sort of innate way of looking at them, then making predictions on what’s going to happen next,” he said. “That’s a very different realm.”

    Modern computers are largely calculating machines with a central processing unit and memory that stores both a program and data. They take a command from the program and data from the memory to execute the command, one step at a time, no matter how fast they run. Parallel and multicore computers can do more than one thing at a time but still use the same basic approach and remain very far removed from the way the brain routinely handles multiple problems concurrently.

    The architecture of neuro-inspired computers would be fundamentally different, uniting processing and storage in a network architecture “so the pieces that are processing the data are the same pieces that are storing the data, and the data will be processed with all nodes functioning concurrently,” Wagner said. “It won’t be a serial step-by-step process; it’ll be this network processing everything all at the same time. So it will be very efficient and very quick.”

    Unlike today’s computers, neuro-inspired computers would inherently use the critical notion of time. “The things that you represent are not just static shots, but they are preceded by something and there’s usually something that comes after them,” creating episodic memory that links what happens when. This requires massive interconnectivity and a unique way of encoding information in the activity of the system itself, Okandan said.

    More neurosciences research opens more possibilities for brain-inspired computing

    Each neuron in a neural structure can have connections coming in from about 10,000 neurons, which in turn can connect to 10,000 other neurons in a dynamic way. Conventional computer transistors, on the other hand, connect on average to four other transistors in a static pattern.

    Computer design has drawn from neuroscience before, but an explosion in neuroscience research in recent years opens more possibilities. While it’s far from a complete picture, Okandan said what’s known offers “more guidance in terms of how neural systems might be representing data and processing information” and clues about replicating those tasks in a different structure to address problems impossible to solve on today’s systems.

    Brain-inspired computing isn’t the same as artificial intelligence, although a broad definition of artificial intelligence could encompass it.

    “Where I think brain-inspired computing can start differentiating itself is where it really truly tries to take inspiration from biosystems, which have evolved over generations to be incredibly good at what they do and very robust against a component failure. They are very energy efficient and very good at dealing with real-world situations. Our current computers are very energy inefficient, they are very failure-prone due to components failing and they can’t make sense of complex data sets,” Okandan said.

    Computers today do required computations without any sense of what the data is — it’s just a representation chosen by a programmer.

    “Whereas if you think about neuro-inspired computing systems, the structure itself will have an internal representation of the datastream that it’s receiving and previous history that it’s seen, so ideally it will be able to make predictions on what the future states of that datastream should be, and have a sense for what the information represents.” Okandan said.

    He estimates a project dedicated to brain-inspired computing will develop early examples of a new architecture in the first several years, but said higher levels of complexity could take decades, even with the many efforts around the world working toward the same goal.

    “The ultimate question is, ‘What are the physical things in the biological system that let you think and act, what’s the core essence of intelligence and thought?’ That might take just a bit longer,” he said.

    For more information, visit the 2014 Neuro-Inspired Computational Elements Workshop website.

    See the full article here.

    Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.
    i1
    i2
    i3


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 10:59 am on April 24, 2014 Permalink | Reply
    Tags: , Sandia National laboratories   

    From Sandia Lab: “Tech transfer program shares Sandia’s science, creates jobs for two decades” 

    Sandia Lab

    For 20 years, Sandia National Laboratories researchers have been able to leave to start or join small companies, knowing they can return. Their work has made a difference: creating jobs, bringing Sandia expertise into the private sector and boosting economic development, a new survey shows.

    gs
    Greg Sommer was on the Sandia National Laboratories team that developed the medical diagnostic lab-on-a-disk SpinDx. It is being commercialized using Sandia’s Entrepreneurial Separation to Transfer Technology program. Sommer left the labs and co-founded Sandstone Diagnostics in Livermore, Calif., which is bringing the technology to market. (Photo by Dino Vournas) Click on the thumbnail for a high-resolution image.

    “The Entrepreneurial Separation to Transfer Technology (ESTT) program is an innovative tech transfer tool that has endured,” said Jackie Kerby Moore, Sandia’s manager of Technology and Economic Development. “Not only do we have many success stories, but we’ve measured the economic impact, which shows positive benefits to the local community. Furthermore, entrepreneurs who return to Sandia bring new experiences that benefit the labs.”

    Technology licenses help form companies

    Thirty-three of the 99 companies involved in ESTT since it was launched in 1994 responded to the survey gauging its economic impact. Respondents said 379 jobs were created by their companies through the program since it began, and that in 2012 they employed 1,550 people at an average annual salary of $80,000. Their 2012 sales revenue was $212 million. From 2008 through 2012, the businesses invested $40 million in equipment and $277 million in goods and services. Two-thirds of them had commercialized a technology as a result of ESTT.

    “These are notable numbers and reflect just a third of the companies affected by the program,” Kerby Moore said. “ESTT is a tool Sandia uses to deploy technology by giving people an opportunity to take a license and form a company. Four startups using Sandia technology licenses came out of the program in the past two years alone, along with a number of company expansions. Of these, three licensed technologies from Sandia.”

    Kerby Moore said one of Sandia’s hottest technologies, the medical diagnostic lab-on-a-disk SpinDx, is being commercialized using ESTT. Greg Sommer, a former Sandia researcher who helped develop SpinDx, co-founded and is chief executive officer of Sandstone Diagnostics in Livermore, Calif., which is bringing the technology to market.

    “The high-tech environment at Sandia is ripe for innovation and game-changing technologies,” he said. “The ESTT program allowed us to launch Sandstone and develop cutting-edge medical products based on technology we originally developed for Sandia’s biodefense missions.”

    ESTT encourages researchers to take technology out of the labs and into the private sector by guaranteeing their jobs back if they return within two years. They can request a third-year extension. The survey shows 145 Sandia researchers have left on ESTT, 62 to start a business and 83 to expand one. Forty-one, or 28 percent, returned to the labs while 98 researchers left for good. Six are currently on ESTT. Of the 99 companies impacted by the program since 1994, 49 were startups and 50 were expansions.

    Of the 145 who left on ESTT, 27 of the companies they joined licensed a Sandia technology.

    Entrepreneurial training offered to scientists

    Sandia business development specialist Genaro Montoya, the program leader, said entrepreneurial training is offered to help researchers considering ESTT. “Anyone at the labs can take the training,” he said. “It gives an idea of what’s involved in starting a small business.”

    Looking back at 20 years, Kerby Moore said ESTT has been an important piece of Sandia’s tech transfer and economic development portfolio. “It is still relevant and has a lot of life ahead,” she said.

    See the full article here.

    Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.
    i1
    i2
    i3


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 2:09 pm on September 16, 2013 Permalink | Reply
    Tags: , , , Sandia National laboratories   

    From Sandia Lab: “Sandia Labs harnessing the sun’s energy with tiny particles” 

    September 16, 2013
    Stephanie Holinka, slholin@sandia.gov or 505-284-9227

    Engineers at Sandia National Laboratories, along with partner institutions Georgia Tech, Bucknell University, King Saud University and the German Aerospace Center (DLR), are using a falling particle receiver to more efficiently convert the sun’s energy to electricity in large-scale, concentrating solar power plants.

    fpr
    Joshua Mark Christian working with the falling particle receiver, which more efficiently converts the sun’s energy to electricity in large-scale, concentrating solar power plants.

    Falling particle receiver technology is attractive because it can cost-effectively capture and store heat at higher temperatures without breaking down, which is an issue for conventional molten salts. The falling particle receiver developed at Sandia drops sand-like ceramic particles through a beam of concentrated sunlight, and captures and stores the heated particles in an insulated container below. The technique enables operating temperatures of nearly 1,000 degrees Celsius. Such high temperatures translate into greater availability of energy and cheaper storage costs because at higher temperatures, less heat-transfer material is needed.

    Central receiver systems use mirrors to concentrate sunlight on a target, typically a fluid, to generate heat, which powers a turbine and generator to produce electricity. Currently, such systems offer about 40 percent thermal-to-electric efficiency. The falling particle receiver enables higher temperatures and can work with higher-temperature power cycles that can achieve efficiencies of 50 percent or more.

    “Our goal is to develop a prototype falling particle receiver to demonstrate the potential for greater than 90 percent thermal efficiency, achieve particle temperatures of at least 700 degrees Celsius, and be cost competitive,” said the project’s principal investigator, Sandia engineer Cliff Ho. “The combination of these factors would dramatically improve the system performance and lower the cost of energy storage for large-scale electricity production.”

    The project is funded up to $4 million by the Department of Energy’s SunShot Initiative, which aims to drive down solar energy production costs and pave the way to widespread use of concentrating solar power and photovoltaics.

    See the full article here.

    Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.
    i1
    i2
    i3


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 10:21 am on April 2, 2013 Permalink | Reply
    Tags: , , , Sandia National laboratories   

    From Sandia Lab: “New instrument will quickly detect botulinum, ricin, other biothreat agents” 

    ” Researchers at Sandia National Laboratories are developing a medical instrument that will be able to quickly detect a suite of biothreat agents, including anthrax, ricin, botulinum, shiga and SEB toxin.

    three
    From left to right, Sandia National Laboratories’ Matt Piccini, Chung-Yan Koh and Anup Singh lead the SpinDx team. A new National Institutes of Health-funded project will take the device to a new level and is expected to result in an instrument that can detect a suite of biothreat agents. (Photo by Jeff McMillan)

    The device, once developed, approved by the Food and Drug Administration and commercialized, would most likely be used in emergency rooms in the event of a bioterrorism incident.

    ‘This is an unmet need for the nation’s biodefense program,’ said Anup Singh, senior manager for Sandia’s biological science and technology group. ‘A point-of-care device does not exist.’

    Sandia’s work is funded by a recent grant – nearly $4 million over four years – from the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health. NIH has funded a number of recent projects at Sandia.

    Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.
    i1
    i2
    i3


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 4:00 pm on March 6, 2013 Permalink | Reply
    Tags: , , Sandia National laboratories   

    From Sandia Lab: “Traumatic brain injury patients, supercomputer simulations studied to improve helmets” 

    November 14, 2012

    Researchers at Sandia National Laboratories and the University of New Mexico are comparing supercomputer simulations of blast waves on the brain with clinical studies of veterans suffering from mild traumatic brain injuries (TBIs) to help improve helmet designs.

    brains
    These computer simulations contain a computer model of a human’s head viewed from above looking down (top row) and from the side (bottom row). The images show the deposition of compressive energy in the brain during frontal, rear and side blasts. These models combined with University of New Mexico’s clinical observations are being used to identify energy thresholds that should lead to better military and sports helmet designs. (Image courtesy of Sandia National Laboratories)

    Paul Taylor and John Ludwigsen of Sandia’s Terminal Ballistics Technology Department and Corey Ford, a neurologist at UNM’s Health Sciences Center, are in the final year of a four-year study of mild TBI funded by the Office of Naval Research.

    three men
    Paul Taylor, right, and John Ludwigsen, center, both researchers with Sandia’s Terminal Ballistics Technology Department, and Corey Ford, a neurologist at the University of New Mexico’s Health Sciences Center, discuss their research on traumatic brain injuries. | Photo by Randy Montoya

    The team hopes to identify threshold levels of stress and energy on which better military and sports helmet designs could be based. They could be used to program sensors placed on helmets to show whether a blast is strong enough to cause TBI.

    Many TBI sufferers experience no or subtle immediate symptoms that may keep them from seeking medical attention. The sensors could alert them to a potential problem.

    ‘Our ultimate goal is to help our military and eventually our civilian population by providing guidance to helmet designers so they can do a better job of protecting against some of these events we are seeing clinically and from a physics perspective, said Taylor, Sandia’s principal investigator on the project. “To do that we’ve got to know what are the threshold conditions that correlate with various levels of TBI.”

    See the full article here.

    Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.
    i1
    i2
    i3


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 1:28 pm on January 7, 2013 Permalink | Reply
    Tags: , , , , Sandia National laboratories   

    From Sandia Lab: “Engineering alternative fuel with cyanobacteria” 

    January 7, 2013
    Sue Holmes

    Sandia National Laboratories Truman Fellow Anne Ruffing has engineered two strains of cyanobacteria to produce free fatty acids, a precursor to liquid fuels, but she has also found that the process cuts the bacteria’s production potential.

    cyanob
    Sandia researchers are cultivating new algae strains to create algal biofuels.

    ar
    Truman Fellow Anne Ruffing looks at a flask of cyanobacteria with precipitated fatty acid floating on top. She has engineered two strains of cyanobacteria to produce free fatty acids, a precursor to fuels, as she studies the direct conversion of carbon dioxide into biofuels by photosynthetic organisms. (Photo by Randy Montoya)

    ‘Even if algae are not the end-term solution, I think they can contribute to getting us there,’ Ruffing said. ‘Regardless of however you look at fossil fuels, they’re eventually going to run out. We have to start looking to the future now and doing research that we’ll need when the time comes.’

    Ruffing favors cyanobacteria because fuel from engineered cyanobacteria is excreted outside the cell, in contrast to eukaryotic algae, in which fuel production occurs inside the cell.

    Ruffing considers her studies as proof-of-concept work that demonstrates engineering cyanobacteria for free fatty acid (FFA) production and excretion. She wants to identify the best hydrocarbon targets for fuel production and the best model strain for genetic engineering, as well as gene targets to improve FFA production.”

    See the full article here.

    Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.
    i1
    i2
    i3


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 12:03 pm on December 20, 2012 Permalink | Reply
    Tags: , , , sandia, Sandia National laboratories,   

    From Sandia Lab: “Supercomputing on the XPRESS track” 

    Sandia aims to create exascale computing operating system

    December 20, 2012

    “In the stratosphere of high-performance supercomputing, a team led by Sandia National Laboratories is designing an operating system that can handle the million trillion mathematical operations per second of future exascale computers, and then create prototypes of several programming components.

    Called the XPRESS project (eXascale Programming Environment and System Software), the effort to achieve a major milestone in million-trillion-operations-per-second supercomputing is funded at $2.3 million a year for three years by DOE’s Office of Science. The team includes Indiana University and Louisiana University; the Universities of North Carolina, Oregon and Houston; and Oak Ridge and Lawrence Berkeley national laboratories. Work began Sept. 1.

    ‘The project’s goal is to devise an innovative operating system and associated components that will enable exascale computing by 2020, making contributions along the way to improve current petaflop (a million billion operations a second) systems,’ said Sandia program lead Ron Brightwell.”

    See the full post here.

    Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.
    i1
    i2
    i3


    ScienceSprings is powered by MAINGEAR computers

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 322 other followers

%d bloggers like this: