Tagged: Oak Ridge National Laboratory Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:17 pm on September 2, 2014 Permalink | Reply
    Tags: , , Oak Ridge National Laboratory   

    From ORNL: “ORNL scientists uncover clues to role of magnetism in iron-based superconductors” 

    i1

    Oak Ridge National Laboratory

    September 1, 2014
    Morgan McCorkle, 865.574.7308,
    mccorkleml@ornl.gov

    New measurements of atomic-scale magnetic behavior in iron-based superconductors by researchers at the Department of Energy’s Oak Ridge National Laboratory and Vanderbilt University are challenging conventional wisdom about superconductivity and magnetism.

    struff
    ORNL scientists used scanning transmission electron microscopy to measure atomic-scale magnetic behavior in several families of iron-based superconductors.

    The study published in Advanced Materials provides experimental evidence that local magnetic fluctuations can influence the performance of iron-based superconductors, which transmit electric current without resistance at relatively high temperatures.

    “In the past, everyone thought that magnetism and superconductivity could not coexist,” said ORNL’s Claudia Cantoni, the study’s first author. “The whole idea of superconductors is that they expel magnetic fields. But in reality things are more complicated.”

    Superconductivity is strongly suppressed by the presence of long-range magnetism – where atoms align their magnetic moments over large volumes – but the ORNL study suggests that rapid fluctuations of local magnetic moments have a different effect. Not only does localized magnetism exist, but it is also correlated with a high critical temperature, the point at which the material becomes superconducting.

    “One would think for superconductivity to exist, not only the long-range order but also the local magnetic moments would have to die out,” Cantoni said. “We saw instead that if one takes a fast ‘picture’ of the local moment, it is actually at its maximum where superconductivity is at its maximum. This indicates that a large local moment is good for superconductivity.”

    The ORNL-led team used a combination of scanning transmission electron microscopy and electron energy loss spectroscopy to characterize the magnetic properties of individual atoms. Other experimental techniques have not been able to capture information on the local magnetic moments in sufficient detail.

    “This kind of measurement of magnetic moments is usually done with more bulk-sensitive techniques, which means they look at the average of the material,” Cantoni said. “When you use the average, you might not get the right answer.”

    The team’s four-year comprehensive study analyzed compounds across several families of iron-based superconductors, revealing universal trends among the different samples. The researchers were able to figure out the total number and distribution of electrons in atomic energy levels that determine the local magnetic moments.

    “We find this number remains constant for all the members of this family,” Cantoni said. “The number of electrons doesn’t change — what changes are the positions and distribution of electrons in different levels. This is why the magnetic moment differs across families.”

    The ORNL scientists also say the technique they demonstrated on iron-based superconductors could be useful in studies of other technologically interesting materials in fields such as electronics and data storage.

    “Electron microscopy has long been an imaging technique that gives you a lot of crystal structure information; now we’re trying to go beyond to get the electronic structure,” Cantoni said. “Not only do we want to know what atoms are where, but what the electrons in those atoms are doing.”

    The study’s coauthors are ORNL’s Claudia Cantoni, Jonathan Mitchell, Andrew May, Michael McGuire, Juan-Carlos Idrobo, Tom Berlijn, Matthew Chisholm, Elbio Dagotto, Wu Zhou, Athena Safa-Sefat and Brian Sales, and the University of Tennessee’s Stephen Pennycook. The research is published as Orbital occupancy and charge doping in iron-based superconductors.

    This research was conducted in part at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility. The research at ORNL was supported by the DOE’s Office of Science. Collaborators Idrobo and Zhou at Vanderbilt University were supported by the National Science Foundation.

    See the full article here.

    ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.

    i2

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 10:29 am on July 23, 2014 Permalink | Reply
    Tags: , , , Oak Ridge National Laboratory, ,   

    From DOE Pulse: “Ames Lab scientist hopes to improve rare earth purification process” 

    pulse

    July 21, 2014
    Austin Kreber, 515.987.4885,
    ajkreber@iastate.edu

    Using the second fastest supercomputer in the world, a scientist at the U.S. Department of Energy’s Ames Laboratory is attempting to develop a more efficient process for purifying rare-earth materials.

    Dr. Nuwan De Silva, a postdoctoral research associate at the Ames Laboratory’s Critical Materials Institute, said CMI scientists are honing in on specific types of ligands they believe will only bind with rare-earth metals. By binding to these rare metals, they believe they will be able to extract just the rare-earth metals without them being contaminated with other metals.

    nd
    Nuwan De Silva, scientist at the Ames
    Laboratory, is developing software to help improve purification of rare-earth materials. Photo credit: Sarom Leang

    Rare-earth metals are used in cars, phones, wind turbines, and other devices important to society. De Silva said China now produces 80-90 percent of the world’s supply of rare-metals and has imposed export restrictions on them. Because of these new export limitations, many labs, including the CMI, have begun trying to find alternative ways to obtain more rare-earth metals.

    Rare-earth metals are obtained by extracting them from their ore. The current extraction process is not very efficient, and normally the rare-earth metals produced are contaminated with other metals. In addition the rare-earth elements for various applications need to be separated from each other, which is a difficult process, one that is accomplished through a solvent extraction process using an aqueous acid solution.

    CMI scientists are focusing on certain types of ligands they believe will bind with just rare-earth metals. They will insert a ligand into the acid solution, and it will go right to the metal and bind to it. They can then extract the rare-earth metal with the ligand still bound to it and then remove the ligand in a subsequent step. The result is a rare-earth metal with little or no contaminants from non rare-earth metals. However, because the solution will still contain neighboring rare-earth metals, the process needs to be repeated many times to separate the other rare earths from the desired rare-earth element.

    The ligand is much like someone being sent to an airport to pick someone up. With no information other than a first name — “John” — finding the right person is a long and tedious process. But armed with a description of John’s appearance, height, weight, and what he is doing, finding him would be much easier. For De Silva, John is a rare-earth metal, and the challenge is developing a ligand best adapted to finding and binding to it.

    To find the optimum ligand, De Silva will use Titan to search through all the possible candidates. First, Titan has to discover the properties of a ligand class. To do that, it uses quantum-mechanical (QM) calculations. These QM calculations take around a year to finish.

    ORNL Titan Supercomputer
    TITAN at ORNL

    Once the QM calculations are finished, Titan uses a program to examine all the parameters of a particular ligand to find the best ligand candidate. These calculations are called molecular mechanics (MM). MM calculations take about another year to accomplish their task.

    “I have over 2,500,000 computer hours on Titan available to me so I will be working with it a lot,” De Silva said. “I think the short term goal of finding one ligand that works will take two years.”

    The CMI isn’t the only lab working on this problem. The Institute is partnering with Oak Ridge National Laboratory, Lawrence Livermore National Laboratory and Idaho National Laboratory as well as numerous other partners. “We are all in constant communication with each other,” De Silva said.

    See the full article here.

    DOE Pulse highlights work being done at the Department of Energy’s national laboratories. DOE’s laboratories house world-class facilities where more than 30,000 scientists and engineers perform cutting-edge research spanning DOE’s science, energy, National security and environmental quality missions. DOE Pulse is distributed twice each month.

    DOE Banner


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 12:36 pm on July 21, 2014 Permalink | Reply
    Tags: , , , , Oak Ridge National Laboratory, ,   

    From Oak Ridge Lab: “‘Engine of Explosion’ Discovered at OLCF now Observed in Nearby Supernova Remnant’ 

    i1

    Oak Ridge National Laboratory

    May 6, 2014
    Katie Elyce Jones

    Data gathered with high-energy x-ray telescope support the SASI model—a decade later

    Back in 2003, researchers using the Oak Ridge Leadership Computing Facility’s (OLCF’s) first supercomputer, Phoenix, started out with a bang. Astrophysicists studying core-collapse [Type II]supernovae—dying massive stars that violently explode after running out of fuel—asked themselves what mechanism triggers explosion and a fusion chain reaction that releases all the elements found in the universe, including those that make up the matter around us?

    “This is really one of the most important problems in science because supernovae give us all the elements in nature,” said Tony Mezzacappa of the University of Tennessee–Knoxville.

    Leading up to the 2003 simulations on Phoenix, one-dimensional supernovae models simulated a shock wave that pushes stellar material outward, expanding to a certain radius before, ultimately, succumbing to gravity. The simulations did not predict that stellar material would push beyond the shock wave radius; instead, infalling matter from the fringes of the expanding star tamped the anticipated explosion. Yet, humans have recorded supernovae explosions throughout history.

    “There have been a lot of supernovae observations,” Mezzacappa said. “But these observations can’t really provide information on the engine of explosion because you need to observe what is emitted from deep within the supernova, such as gravitational waves or neutrinos. It’s hard to do this from Earth.”

    Then simulations on Phoenix offered a solution: the SASI, or standing accretion shock instability, a sloshing of stellar material that destabilizes the expanding shock and helps lead to an explosion.

    “Once we discovered the SASI, it became very much a part of core-collapse supernova theory,” Mezzacappa said. “People feel it is an important missing ingredient.”

    The SASI provided a logical answer supported by other validated physics models, but it was still theoretical because it had only been demonstrated computationally.

    Now, more than a decade later, researchers mapping radiation signatures from the Cassiopeia A supernova with NASA’s NuSTAR high-energy x-ray telescope array have published observational evidence that supports the SASI model.

    NASA NuSTAR
    NASA/NuStar

    Cass A
    Cas A
    A false color image off Cassiopeia using observations from both the Hubble and Spitzer telescopes as well as the Chandra X-ray Observatory (cropped).
    Courtesy NASA/JPL-Caltech

    “What they’re seeing are x-rays that come from the radioactive decay of Titanium-44 in Cas A,” Mezzacappa said.

    Because Cassiopeia A is only 11,000 light-years away within the Milky Way galaxy (relatively nearby in astronomical distances), NuSTAR is capable of detecting Ti-44 located deep in the supernova ejecta. Mapping the radiative signature of this titanium isotope provides information on the supernova’s engine of explosion.

    “The distribution of titanium is what suggests that the supernova ‘sloshes’ before it explodes, like the SASI predicts,” Mezzacappa said.

    This is a rare example of simulation predicting a physical phenomenon before it is observed experimentally.

    “Usually it’s the other way around. You observe something experimentally then try to model it,” said the OLCF’s Bronson Messer. “The SASI was discovered computationally and has now been confirmed observationally.”

    The authors of the Nature letter that discusses the NuSTAR results cite Mezzacappa’s 2003 paper introducing the SASI in The Astrophysical Journal, which was coauthored by John Blondin and Christine DeMarino, as a likely model to describe the Ti-44 distribution.

    Despite observational support for the SASI, researchers are uncertain whether the SASI is entirely responsible for triggering a supernova explosion or if it is just part of the explanation. To further explore the model, Mezzacappa’s team, including the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) project’s principal investigator Eric Lentz, are taking supernovae simulations to the next level on the OLCF’s 27-petaflop Titan supercomputer located at Oak Ridge National Laboratory.

    ORNL Titan Supercomputer
    Titan at ORNL

    “The role of the SASI in generating explosion and whether or not the models are sufficiently complete to predict the course of explosion is the important question now,” Mezzacappa said. “The NuSTAR observation suggests it does aid in generating the explosion.”

    Although the terascale runs that predicted the SASI in 2003 were in three dimensions, they did not include much of the physics that can now be solved on Titan. Today, the team is using 85 million core hours and scaling to more than 60,000 cores to simulate a supernova in three dimensions with a fully physics-based model. The petascale Titan simulation, which will be completed later this year, could be the most revealing supernova explosion yet—inside our solar system anyway.

    ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.

    See the full article here.

    i2


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 5:44 pm on May 7, 2014 Permalink | Reply
    Tags: , , , , Oak Ridge National Laboratory,   

    From Oak Ridge: “World’s Most Powerful Accelerator Comes to Titan with a High-Tech Scheduler” 

    i1

    Oak Ridge National Laboratory

    May 6, 2014
    Leo Williams

    The people who found the Higgs boson have serious data needs, and they’re meeting some of them on the Oak Ridge Leadership Computing Facility’s (OLCF’s) flagship Titan system.

    titan

    Researchers with the ATLAS experiment at Europe’s Large Hadron Collider (LHC) have been using Titan since December, according to Ken Read, a physicist at Oak Ridge National Laboratory and the University of Tennessee. Read, who works with another LHC experiment, known as ALICE, noted that much of the challenge has been in integrating ATLAS’s advanced scheduling and analysis tool, PanDA, with Titan.

    CERN ATLAS New
    ATLAS

    CERN LHC particles
    LHC

    PanDA (for Production and Distributed Analysis) manages all of ATLAS’s data tasks from a server located at CERN, the European Organization for Nuclear Research. The job is daunting, with the workflow including 1.8 million computing jobs each day distributed among 100 or so computing centers spread across the globe.

    PanDA is able to match ATLAS’s computing needs seamlessly with disparate systems in its network, making efficient use of resources as they become available.

    In all, PanDA manages 150 petabytes of data (enough to hold about 75 million hours of high-definition video), and its needs are growing rapidly—so rapidly that it needs access to a supercomputer with the muscle of Titan, the United States’ most powerful system.

    “For ATLAS, access to the leadership computing facilities will help it manage a hundredfold increase in the amount of data to be processed,” said ATLAS developer Alexei Klimentov of Brookhaven National Laboratory. PanDA was developed in the United States under the guidance of Kaushik De of the University of Texas at Arlington and Torre Wenaus from Brookhaven National Laboratory.

    “Our grid resources are overutilized,” Klimentov said. “It’s a question of where we can find resources and use them opportunistically. We cannot scale the grid 100 times.”

    In order to integrate with Titan, PanDA team developers Sergey Panitkin from BNL and Danila Oleynik from UTA redesigned parts of the PanDA system on Titan responsible for job submission on remote sites (known as “Pilot”) and gave PanDA new capability to collect information about unused worker nodes on Titan. This allows PanDA to precisely define the size and duration of jobs submitted to Titan according to available free resources. This work was done in collaboration with OLCF technical staff.

    The collaboration holds potential benefits for OLCF as well as for ATLAS.

    In the first place, PanDA’s ability to efficiently match available computing time with high-priority tasks holds great promise for a leadership system such as Titan. While the OLCF focuses on projects that can use most, if not all, of Titan’s 18,000-plus computing nodes, there are occasionally a relatively small numbers of nodes sitting idle for one or several hours. They sit idle because there are not enough of them—or they don’t have enough time—to handle a leadership computing job. A scheduler that can occupy those nodes with high-priority tasks would be very valuable.

    “Today, if we use 90 or 92 percent of available hours, we think that is high utilization,” said Jack Wells, director of science at the OLCF. “That’s because of inefficiencies in scheduling big jobs. If we have a flexible workflow to schedule jobs for backfill, it would mean higher utilization of Titan for science.”

    PanDA is also highly skilled at finding needles in haystacks, as it showed during the search for the Higgs boson.

    According to the Standard Model of particle physics, the field associated with the Higgs is necessary for other particles to have mass. The boson is also very massive itself and decays almost instantly; this means it can be created and detected only by a very high-energy facility. In fact, it has, so far, been found definitively only at the LHC, which is the world’s most powerful particle accelerator.

    sm
    The Standard Model of elementary particles, with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    But while high energy was necessary for identifying the Higgs, it was not sufficient. The LHC creates 800 million collisions between protons each second, yet it creates a Higgs boson only once every one to two hours. In other words, it takes 4 trillion collisions, more or less, to create a Higgs. And it takes PanDA to manage ATLAS’s data processing workflow in sifting through the data and finding it.

    PanDA’s value to high-performance computing is widely recognized. The Department of Energy’s offices of Advanced Scientific Computing Research and High Energy Physics are, in fact, funding a project known as Big PanDA to expand the tool beyond high-energy physics to be used by other communities.

    See the full article here.

    ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.

    i2


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 10:57 am on August 13, 2013 Permalink | Reply
    Tags: , , , , Oak Ridge National Laboratory   

    From ORNL Lab: “Neutrons’ view of hydrogen yields insight into HIV drug design” 

    ORNL-led study demonstrates relevance of neutrons in biomedical research

    August 13, 2013
    Morgan McCorkle

    “A new study from an international team led by the Department of Energy’s Oak Ridge National Laboratory is guiding drug designers toward improved pharmaceuticals to treat HIV. The scientists used neutrons and x-rays to study the interactions between HIV protease, a protein produced by the HIV virus, and an antiviral drug commonly used to block virus replication.

    atom
    An ORNL-led team used neutrons to study the interactions between HIV protease, a protein produced by the HIV virus, and an antiviral drug called amprenavir commonly used to block virus replication. The magenta mesh is the neutron scattering density map showing the exact locations of hydrogen atoms bound to oxygen atoms. The blue dashed lines represent the strongest hydrogen bonds between the drug and the enzyme. This knowledge will help researchers improve the drug’s chemistry and increase its effectiveness.No image credit.

    Using neutrons from the Institut Laue-Langevin in Grenoble, France, the researchers gained a never-before-seen view of hydrogen bonds that connect the HIV protease and the drug. Unlike x-rays, neutrons can easily detect the position of hydrogen atoms.

    ‘Knowing where hydrogen atoms are located gives researchers a much better idea about the nature and strength of the interactions,’ said lead author Andrey Kovalevsky of ORNL. ‘By applying neutron crystallography we have effectively increased the clarity of this picture, because hydrogen atoms become visible in the neutron structures. Using neutrons, we are now able to see every atom in a protein-drug complex, all the way to the smallest atom in nature.’

    The research, published in the Journal of Medicinal Chemistry, presents drug designers with a set of new potential sites for the improvement of the drug’s surface chemistry to significantly strengthen the binding, thereby increasing the effectiveness of the drugs and reducing the necessary dosages.”

    See the full article here.
    i1

    i2


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 6:12 pm on April 3, 2013 Permalink | Reply
    Tags: , , , Oak Ridge National Laboratory   

    From ORNL: “ORNL microscopy uncovers “dancing” silicon atoms in graphene” 

    April 3, 2013
    Morgan McCorkle

    “Jumping silicon atoms are the stars of an atomic scale ballet featured in a new Nature Communications study from the Department of Energy’s Oak Ridge National Laboratory.

    graph
    Oak Ridge National Laboratory researchers used electron microscopy to document the ‘dancing’ motions of silicon atoms, pictured in white, in a graphene sheet.

    The ORNL research team documented the atoms’ unique behavior by first trapping groups of silicon atoms, known as clusters, in a single-atom-thick sheet of carbon called graphene. The silicon clusters, composed of six atoms, were pinned in place by pores in the graphene sheet, allowing the team to directly image the material with a scanning transmission electron microscope.

    The ‘dancing’ movement of the silicon atoms was caused by the energy transferred to the material from the electron beam of the team’s microscope.

    ‘It’s not the first time people have seen clusters of silicon,’ said coauthor Juan Carlos Idrobo. ‘The problem is when you put an electron beam on them, you insert energy into the cluster and make the atoms move around. The difference with these results is that the change that we observed was reversible. We were able to see how the silicon cluster changes its structure back and forth by having one of its atoms ‘dancing’ between two different positions.'”

    See the full article here.

    i1

    ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.

    i2


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 2:34 pm on February 28, 2013 Permalink | Reply
    Tags: , , Oak Ridge National Laboratory   

    From ORNL: “ORNL begins implementation of new californium-252 production contract” 

    Oak Ridge National Laboratory

    Feb. 28, 2013
    Bill Cabage

    The Department of Energy’s Oak Ridge National Laboratory – home of one of only two reactor facilities in the world capable of producing californium-252 (Cf-252) – has begun implementing a new six-year contract between the DOE Isotope Program and industry to make this unique and versatile radioisotope.

    The new contract follows the successful completion of a four-year Cf-252 program under an agreement with a consortium of industries that use the neutron emitting radioisotope for a number of applications that focus mostly on analysis, detection and nuclear energy.

    ‘Californium-252 serves as a unique, portable neutron source,’ said Julie Ezold, who manages ORNL’s Cf-252 production program. ‘A cross-cut of industries including coal, oil and mineral companies rely on it for critical applications, and it is used in defense and national security applications.'”

    See the full article here.

    i1

    ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science.

    i2


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 2:08 pm on February 9, 2013 Permalink | Reply
    Tags: , , , , Oak Ridge National Laboratory   

    From Oak Ridge Lab: “ORNL scientists solve mercury mystery, Science reports” 


    Oak Ridge National Laboratory

    Saturday, February 9, 2013
    Ron Walli

    “By identifying two genes required for transforming inorganic into organic mercury, which is far more toxic, scientists today have taken a significant step toward protecting human health.

    merc
    Image by Thomas Splettstoesser

    The question of how methylmercury, an organic form of mercury, is produced by natural processes in the environment has stumped scientists for decades, but a team led by researchers at Oak Ridge National Laboratory has solved the puzzle. Results of the study, published in the journal Science, provide the genetic basis for this process, known as microbial mercury methylation, and have far-reaching implications.

    ‘Until now, we did not know how the bacteria convert mercury from natural and industrial processes into methylmercury,’ said ORNL’s Liyuan Liang, a co-author and leader of a large Department of Energy-funded mercury research program that includes researchers from the University of Missouri-Columbia and University of Tennessee.

    Ultimately, by combining chemical principles and genome sequences, the team identified two genes, which they named hgcA and hgcB. Researchers experimentally deleted these genes one at a time from two strains of bacteria, which caused the resulting mutants to lose the ability to produce methylmercury. Reinserting these genes restored that capability, thus verifying the discovery.

    ‘This newly gained knowledge will allow scientists to study proteins responsible for the conversion process and learn what controls the activity,’ said Liang, adding that it may lead to ways of limiting methylmercury production in the environment.”

    See the full article here.

    Oak Ridge Lab Campus

    i1

    i2


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 1:01 pm on January 29, 2013 Permalink | Reply
    Tags: , , , Oak Ridge National Laboratory   

    From ORNL: ” ‘Zoomable’ map of poplar proteins offers new view of bioenergy crop” 

    Oak Ridge National Laboratory

    Tuesday, January 29, 2013
    Morgan McCorkle

    Researchers seeking to improve production of ethanol from woody crops have a new resource in the form of an extensive molecular map of poplar tree proteins, published by a team from the Department of Energy’s Oak Ridge National Laboratory.

    map
    An extensive molecular map of poplar tree proteins from Oak Ridge National Laboratory offers new insight into the plant’s biological processes. Knowing how poplar trees alter their proteins to change and adapt to environmental surroundings could help bioenergy researchers develop plants better suited to biofuel production. The study is featured on the cover of January’s Molecular and Cellular Proteomics. No image credit.

    Populus, a fast-growing perennial tree, holds potential as a bioenergy crop due to its ability to produce large amounts of biomass on non-agricultural land. Now, a study by ORNL scientists with the Department of Energy’s BioEnergy Science Center has provided the most comprehensive look to date at poplar’s proteome, the suite of proteins produced by a plant’s cells. The study is featured on the cover of January’s Molecular and Cellular Proteomics.

    ‘The ability to comprehensively measure genes and proteins helps us understand the range of molecular machinery that a plant uses to do its life functions,’ said ORNL’s Robert Hettich. ‘This can provide the information necessary to modify a metabolic process to do something specific, such as altering the lignin content of a tree to make it better suited for biofuel production.'”

    See the full article here.

    i2

    i1


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 2:36 pm on January 25, 2013 Permalink | Reply
    Tags: , , Oak Ridge National Laboratory   

    From ORNL Lab: “ORNL research paves way for larger, safer lithium ion batteries” 

    i1

    Friday, January 25, 2013
    Morgan McCorkle

    Looking toward improved batteries for charging electric cars and storing energy from renewable but intermittent solar and wind, scientists at Oak Ridge National Laboratory have developed the first high-performance, nanostructured solid electrolyte for more energy-dense lithium ion batteries.

    matrix
    ORNL researchers developed a nanoporous solid electrolyte (bottom left and in detail on right) from a solvated precursor (top left). The material conducts ions 1,000 times faster than its natural bulk form and enables more energy-dense lithium ion batteries.

    Today’s lithium-ion batteries rely on a liquid electrolyte, the material that conducts ions between the negatively charged anode and positive cathode. But liquid electrolytes often entail safety issues because of their flammability, [read this, Boeing] especially as researchers try to pack more energy in a smaller battery volume. Building batteries with a solid electrolyte, as ORNL researchers have demonstrated, could overcome these safety concerns and size constraints.

    ‘To make a safer, lightweight battery, we need the design at the beginning to have safety in mind, said ORNL’s Chengdu Liang, who led the newly published study in the Journal of the American Chemical Society.”

    See the full article here.

    i2


    ScienceSprings is powered by MAINGEAR computers

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 323 other followers

%d bloggers like this: