Tagged: NRAO Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:59 pm on January 8, 2014 Permalink | Reply
    Tags: , , , , NRAO,   

    From NRAO: “Dwarf Galaxies Give Clues to Origin of Supermassive Black Holes” 

    NRAO Icon
    National Radio Astronomy Observatory

    NRAO Banner

    Monday, 6 January 2014
    Contact: Dave Finley, Public Information Officer
    (575) 835-7302; dfinley@nrao.edu

    Poring through data from a large sky survey, astronomers have found more than 100 small, dwarf galaxies with characteristics indicating that they harbor massive black holes feeding on surrounding gas. The discovery confounds a common assumption that only much larger galaxies hold such monsters, and may help resolve the question of how such black holes originated and grew in the early Universe.

    uni
    Dwarf galaxy NGC 4395, about 13 million light-years from Earth, known to harbor a black hole some 300,000 times more massive than the Sun. It is a prototypical example of a small galaxy once thought to be too small to contain such a black hole.
    CREDIT: David W. Hogg, Michael R. Blanton, and the Sloan Digital Sky Survey Collaboration; NRAO/AUI/NSF.

    Another view
    image
    An ultraviolet image of NGC 4395 taken with GALEX.
    Credit: GALEX/NASA

    “We’ve shown that even small galaxies can have massive black holes and that they may be more common than previously thought,” said Amy Reines, of the National Radio Astronomy Observatory (NRAO). “This is really exciting because these little galaxies hold the clues to the origin of the first ‘seeds’ of supermassive black holes in the early Universe,” she said. Reines and her colleagues presented their findings to the American Astronomical Society’s meeting in Washington, DC.

    Black holes are concentrations of mass so dense that not even light can escape their gravitational pull. Nearly all “full-sized” galaxies are known to have supermassive black holes, millions or billions of times more massive than the Sun, at their cores. Until recently, however, smaller galaxies were thought not to harbor massive black holes.

    Reines, along with Jenny Greene of Princeton University and Marla Geha of Yale University, analyzed data from the Sloan Digital Sky Survey, and found more than 100 dwarf galaxies whose patterns of light emission indicated the presence of massive black holes and their feeding process.

    “The galaxies are comparable in size to the Magellanic Clouds, dwarf satellite galaxies of the Milky Way,” Geha said. “Previously, such galaxies were thought to be too small to have such massive black holes,” she added.

    In the nearby Universe, astronomers have found a direct relationship between the mass of a galaxy’s central black hole and a “bulge” in its center. This indicates that the black holes and the bulges may have affected each others’ growth.

    “Finding these small galaxies with massive black holes is an important step toward understanding how galaxies and black holes developed together,” Greene said. “These dwarf galaxies are the smallest known to host massive black holes and can provide clues to how supermassive black holes get started in the first place,” she added.

    While today’s larger galaxies hold black holes millions or billions of times more massive than the Sun, the dwarf galaxies in the new study have black holes roughly 100,000 times the Sun’s mass. The supermassive and massive black holes are distinct from stellar-mass black holes — only a few times the mass of the Sun — that result from the collapse of a massive star at the end of its “normal” life.

    Still unknown, the scientists said, is whether the massive black holes initially began as the remnants of extremely massive early stars or some other scenario of collapsing mass.

    “Getting a good census of dwarf galaxies with massive black holes is an important first step to resolving this question,” Reines said.

    See the full article here.

    The NRAO operates a complementary, state-of-the-art suite of radio telescope facilities for use by the scientific community, regardless of institutional or national affiliation: the Very Large Array (VLA), the Robert C. Byrd Green Bank Telescope (GBT), and the Very Long Baseline Array (VLBA)*.

    NRAO ALMA
    NRAO ALMA

    NRAO GBT
    NRAO GBT

    NRAO VLA
    NRAO VLA

    The NRAO is building two new major research facilities in partnership with the international community that will soon open new scientific frontiers: the Atacama Large Millimeter/submillimeter Array (ALMA), and the Expanded Very Large Array (EVLA). Access to ALMA observing time by the North American astronomical community will be through the North American ALMA Science Center (NAASC).
    *The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It’s the world’s largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 1:47 pm on September 5, 2013 Permalink | Reply
    Tags: , , , , NRAO   

    From NRAO: “Powerful Jets Blowing Material Out of Galaxy” 

    NRAO Icon
    National Radio Astronomy Observatory

    NRAO Banner

    5 September 2013
    Dave Finley, Public Information Officer
    Socorro, NM
    (575) 835-7302
    dfinley@nrao.edu

    Astronomers using a worldwide network of radio telescopes have found strong evidence that a powerful jet of material propelled to nearly light speed by a galaxy’s central black hole is blowing massive amounts of gas out of the galaxy. This process, they said, is limiting the growth of the black hole and the rate of star formation in the galaxy, and thus is a key to understanding how galaxies develop.

    graph
    Radio-Telescope Image of Galaxy 4C12.50

    Astronomers have theorized that many galaxies should be more massive and have more stars than is actually the case. Scientists proposed two major mechanisms that would slow or halt the process of mass growth and star formation — violent stellar winds from bursts of star formation and pushback from the jets powered by the galaxy’s central, supermassive black hole.

    “With the finely-detailed images provided by an intercontinental combination of radio telescopes, we have been able to see massive clumps of cold gas being pushed away from the galaxy’s center by the black-hole-powered jets,” said Raffaella Morganti, of the Netherlands Institute for Radio Astronomy and the University of Groningen.

    The scientists studied a galaxy called 4C12.50, nearly 1.5 billion light-years from Earth. They chose this galaxy because it is at a stage where the black-hole “engine” that produces the jets is just turning on. As the black hole, a concentration of mass so dense that not even light can escape, pulls material toward it, the material forms a swirling disk surrounding the black hole. Processes in the disk tap the tremendous gravitational energy of the black hole to propel material outward from the poles of the disk.

    At the ends of both jets, the researchers found clumps of hydrogen gas moving outward from the galaxy at 1,000 kilometers per second. One of the clouds has much as 16,000 times the mass of the Sun, while the other contains 140,000 times the mass of the Sun. The larger cloud, the scientists said, is roughly 160 by 190 light-years in size.

    “This is the most definitive evidence yet for an interaction between the swift-moving jet of such a galaxy and a dense interstellar gas cloud,” Morganti said. “We believe we are seeing in action the process by which an active, central engine can remove gas –the raw material for star formation — from a young galaxy,” she added.

    The scientists also said their observations indicate that the jets from the galaxy’s core can stretch and deform clouds of interstellar gas to expand their “pushing” effect beyond the narrow width of the jets themselves. In addition, they reported that, at 4C12.50’s stage of development, the jets may turn on and off and so periodically repeat the process of removing gas from the galaxy.

    Morganti and her team used radio telescopes in Europe and the U.S., combining their signals to make one giant, intercontinental telescope. In the U.S., these included the National Science Foundation’s Very Long Baseline Array (VLBA), a continent-wide system of radio telescopes ranging from Hawaii, across the U.S. mainland, to St. Croix in the Virgin Islands, and one antenna from the Karl G. Jansky Very Large Array (VLA) in New Mexico. The European radio telescopes they used are in Effelsberg, Germany; Westerbork, the Netherlands; and Onsala, Sweden. The extremely high resolving power, or ability to see fine detail, provided by such a far-flung system was essential to pinpointing the location of the gas clouds affected by the galaxy’s jets.

    See the full article here.

    The NRAO operates a complementary, state-of-the-art suite of radio telescope facilities for use by the scientific community, regardless of institutional or national affiliation: the Very Large Array (VLA), the Robert C. Byrd Green Bank Telescope (GBT), and the Very Long Baseline Array (VLBA)*.

    NRAO ALMA
    NRAO ALMA

    NRAO GBT
    NRAO GBT

    NRAO VLA
    NRAO VLA

    The NRAO is building two new major research facilities in partnership with the international community that will soon open new scientific frontiers: the Atacama Large Millimeter/submillimeter Array (ALMA), and the Expanded Very Large Array (EVLA). Access to ALMA observing time by the North American astronomical community will be through the North American ALMA Science Center (NAASC).
    *The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It’s the world’s largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

     
  • richardmitnick 3:26 pm on July 18, 2013 Permalink | Reply
    Tags: , , , , , , NRAO   

    From ESO: “Snow in an Infant Planetary System” 

    A frosty landmark for planet and comet formation

    18 July 2013

    Contacts
    Chunhua Qi
    Harvard-Smithsonian Center for Astrophysics
    Cambridge, Mass., USA
    Tel: +1 617 495 7087
    Email: cqi@cfa.harvard.edu

    Michiel Hogerheijde
    Leiden Observatory
    Leiden, The Netherlands
    Tel: +31 6 4308 3291
    Email: michiel@strw.leidenuniv.nl

    Richard Hook
    ESO, Public Information Officer
    Garching bei München, Germany
    Tel: +49 89 3200 6655
    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    “A snow line has been imaged in a far-off infant planetary system for the very first time. The snow line, located in the disc around the Sun-like star TW Hydrae, promises to tell us more about the formation of planets and comets, the factors that decide their composition, and the history of the Solar System. The results are published today in Science Express.

    snow
    Artist’s impression

    Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have taken the first ever image of the snow line in an infant planetary system. On Earth, snow lines form at high altitudes where falling temperatures turn the moisture in the air into snow. This line is clearly visible on a mountain, where the snow-capped summit ends and the rocky face begins.

    The snow lines around young stars form in a similar way, in the distant, colder reaches of the dusty discs from which planetary systems form. Starting from the star and moving outwards, water (H2O) is the first to freeze, forming the first snow line. Further out from the star, as temperatures drop, more exotic molecules can freeze and turn to snow, such as carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO). These different snows give the dust grains a sticky outer coating and play an essential role in helping the grains to overcome their usual tendency to break up in collisions, allowing them to become the crucial building blocks of planets and comets. The snow also increases how much solid matter is available and may dramatically speed up the planetary formation process.

    Each of these different snow lines — for water, carbon dioxide, methane and carbon monoxide — may be linked to the formation of particular kinds of planets. Around a Sun-like star in a planetary system like our own, the water snow line would correspond to a distance between the orbits of Mars and Jupiter, and the carbon monoxide snow line would correspond to the orbit of Neptune.

    The snow line spotted by ALMA is the first glimpse of the carbon monoxide snow line, around TW Hydrae, a young star 175 light-years away from Earth. Astronomers believe this budding planetary system shares many of the same characteristics of the Solar System when it was just a few million years old.

    The team is composed of C. Qi (Harvard-Smithsonian Center for Astrophysics, USA), K. I. Öberg (Departments of Chemistry and Astronomy, University of Virginia, USA), D. J. Wilner (Harvard-Smithsonian Center for Astrophysics, USA), P. d’Alessio (Centro de Radioastronomía y Astrofisica, Universidad Nacional Autónoma de Mexico, Mexico), E. Bergin (Department of Astronomy, University of Michigan, USA), S. M. Andrews (Harvard-Smithsonian Center for Astrophysics, USA), G. A. Blake (Division of Geological and Planetary Sciences, California Institute of Technology, USA), M. R. Hogerheijde (Leiden Observatory, Leiden University, Netherlands) and E. F. van Dishoeck (Max Planck Institute for Extraterrestrial Physics, Germany).

    See the full article here, with notes.

    NRAO news release

    Qi and Öberg were joint lead authors of this work.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.
    NRAO Icon

    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube
    THE BASIC TOOLS OF E.S.O.
    i1
    Paranal Platform The VLT
    ESO NTT

    NTT – New Technology Telescope


    La Silla

    alma
    ALMA Atacama Large Millimeter/submillimeter Array

    i2
    The European Extremely Large Telescope
    VISTAVISTA (the Visible and Infrared Survey Telescope for Astronomy)


    Atacama Pathfinder Experiment telescope (APEX)

    ESO, European Southern Observatory, builds and operates a suite of the world’s most advanced ground-based astronomical telescopes.


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 2:05 pm on May 9, 2013 Permalink | Reply
    Tags: , , , , Green Bank, NRAO, ,   

    From NRAO: “Astronomers Discover Surprising Clutch of Hydrogen Clouds Lurking among Our Galactic Neighbors” 

    NRAO Icon
    National Radio Astronomy Observatory

    NRAO Banner

    “In a dark, starless patch of intergalactic space, astronomers have discovered a never-before-seen cluster of hydrogen clouds strewn between two nearby galaxies, Andromeda (M31) and Triangulum (M33). The researchers speculate that these rarefied blobs of gas — each about as massive as a dwarf galaxy — condensed out of a vast and as-yet undetected reservoir of hot, ionized gas, which could have accompanied an otherwise invisible band of dark matter.

    gas
    Intergalactic clouds between Andromeda and Triangulum galaxies

    The astronomers detected these objects using the National Science Foundation’s Green Bank Telescope (GBT) at the National Radio Astronomy Observatory (NRAO) in Green Bank, W.Va. The results were published in the journal Nature.

    ‘We have known for some time that many seemingly empty stretches of the Universe contain vast but diffuse patches of hot, ionized hydrogen,’ said Spencer Wolfe of West Virginia University in Morgantown. ‘Earlier observations of the area between M31 and M33 suggested the presence of colder, neutral hydrogen, but we couldn’t see any details to determine if it had a definitive structure or represented a new type of cosmic feature. Now, with high-resolution images from the GBT, we were able to detect discrete concentrations of neutral hydrogen emerging out of what was thought to be a mainly featureless field of gas.'”

    See the full article here.

    NRAO ALMA
    NRAO ALMA

    NRAO GBT
    NRAO GBT

    NRAO VLA
    NRAO VLA

    The NRAO operates a complementary, state-of-the-art suite of radio telescope facilities for use by the scientific community, regardless of institutional or national affiliation: the Very Large Array (VLA), the Robert C. Byrd Green Bank Telescope (GBT), and the Very Long Baseline Array (VLBA)*.

    The NRAO is building two new major research facilities in partnership with the international community that will soon open new scientific frontiers: the Atacama Large Millimeter/submillimeter Array (ALMA), and the Expanded Very Large Array (EVLA). Access to ALMA observing time by the North American astronomical community will be through the North American ALMA Science Center (NAASC).

    *The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It’s the world’s largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

     
  • richardmitnick 11:41 am on February 28, 2013 Permalink | Reply
    Tags: , , , , NRAO   

    From NRAO: “Discoveries Suggest Icy Cosmic Start for Amino Acids and DNA Ingredients” 

    NRAO Icon
    National Radio Astronomy Observatory

    NRAO Banner

    February 28, 2013
    Dave Finley, Public Information Officer
    Socorro, NM
    (575) 835-7302
    dfinley@nrao.edu

    Using new technology at the telescope and in laboratories, researchers have discovered an important pair of prebiotic molecules in interstellar space. The discoveries indicate that some basic chemicals that are key steps on the way to life may have formed on dusty ice grains floating between the stars.

    Science Foundation’s Green Bank Telescope (GBT) in West Virginia to study a giant cloud of gas some 25,000 light-years from Earth, near the center of our Milky Way Galaxy. The chemicals they found in that cloud include a molecule thought to be a precursor to a key component of DNA and another that may have a role in the formation of the amino acid alanine.

    alanine
    hex
    Alanine

    One of the newly-discovered molecules, called cyanomethanimine, is one step in the process that chemists believe produces adenine, one of the four nucleobases that form the “rungs” in the ladder-like structure of DNA. The other molecule, called ethanamine, is thought to play a role in forming alanine, one of the twenty amino acids in the genetic code.

    ‘Finding these molecules in an interstellar gas cloud means that important building blocks for DNA and amino acids can ‘seed’ newly-formed planets with the chemical precursors for life,’ said Anthony Remijan, of the National Radio Astronomy Observatory (NRAO).

    In each case, the newly-discovered interstellar molecules are intermediate stages in multi-step chemical processes leading to the final biological molecule. Details of the processes remain unclear, but the discoveries give new insight on where these processes occur.”

    See the full article here.

    NRAO ALMA
    NRAO ALMA

    NRAO GBT
    NRAO GBT

    NRAO VLA
    NRAO VLA

    The NRAO operates a complementary, state-of-the-art suite of radio telescope facilities for use by the scientific community, regardless of institutional or national affiliation: the Very Large Array (VLA), the Robert C. Byrd Green Bank Telescope (GBT), and the Very Long Baseline Array (VLBA)*.

    The NRAO is building two new major research facilities in partnership with the international community that will soon open new scientific frontiers: the Atacama Large Millimeter/submillimeter Array (ALMA), and the Expanded Very Large Array (EVLA). Access to ALMA observing time by the North American astronomical community will be through the North American ALMA Science Center (NAASC).

    *The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It’s the world’s largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 345 other followers

%d bloggers like this: