Tagged: Neutrinos Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:09 pm on September 5, 2014 Permalink | Reply
    Tags: , , , Neutrinos   

    From FNAL: “Feature – Neutrinos permeate Fermilab’s past, present and future” 

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    Friday, Sept. 5, 2014
    Troy Rummler

    It was called Target Station C. One of three stations north of Wilson Hall at the end of beamlines extending from the Main Ring (later replaced by the Tevatron), Target Station C was assigned to experiments that would require high beam intensities for investigating neutrino interactions, according to a 1968 design report.

    Fermilab Tevatron
    Tevatron at FNAL

    Within a few years, Target Station C was officially renamed the Neutrino Area. It was the first named fixed-target area and the first to be fully operational. Neutrinos and the Intensity Frontier had an early relationship with Fermilab. But why is it resurfacing now?

    “The experimental program is driven by the current state of knowledge, and that’s always changing,” said Jeffrey Appel, a retired Fermilab physicist and assistant laboratory director who started research at the lab in 1972.

    When Appel first arrived, there was intense interest in neutrinos because the weak force was poorly understood, and neutral currents were still a controversial idea. Fermilab joined forces with many institutions both in and outside the United States, and throughout the 1970s and early 1980s, neutrinos generated from protons in the Main Ring crashed through a 15-foot bubble chamber filled with super-heated liquid hydrogen. Other experiments running in parallel recorded neutrino interactions in iron and scintillator.

    “The goal was to look for the W and Z produced in neutrino interactions,” said Appel. “So the priority for getting the beam up first and the priority for getting the detectors built and installed was on that program in those days.”

    It turns out that the W and Z bosons are too massive to have been produced this way and had to wait to be discovered at colliding-beam experiments. As soon as the Tevatron was ready for colliding beams in 1985, the transition began at Fermilab from fixed-target areas to high-energy particle colliding.

    More recent revelations have shown that neutrinos have mass. These findings have raised new questions that need answers. In 1988, plans were laid to add the Main Injector to the Fermilab campus, partly to boost the capabilities of the Tevatron, but also, according to one report, because “intense beams of neutral kaons and neutrinos would provide a unique facility for CP violation and neutrino oscillation experiments.”

    Although neutrino research was a smaller fraction of the lab’s program during Tevatron operations, it was far from dormant. Two great accomplishments in neutrino research occurred in this time period: One was the most precise neutrino measurement of the strength of the weak interaction by the NuTeV experiment. The other was when the DONUT experiment achieved its goal of making the first direct observation of the tau neutrino in 2000.

    “In the ’90s most evidence of neutrinos changing flavors was coming from natural sources. But this inspired a whole new generation of accelerator-based neutrino experiments,” said Deborah Harris, co-spokesperson for the MINERvA neutrino experiment. “That’s when Fermilab changed gears to make lower-energy but very intense neutrino beams that were uniquely suited for oscillation physics.”

    In partnership with institutions around the globe, Fermilab began planning and building a suite of neutrino experiments. MiniBooNE and MINOS started running in the early 2000s and MINERvA started in 2010. MicroBooNE and NOvA are starting their runs this year.

    Now the lab is working with other institutions to establish a Long-Baseline Neutrino Facility at the laboratory and advance its short-baseline neutrino research program. As Fermilab strengthens its international partnerships in all its neutrino experiments, it is also working to position itself as the home of the world’s forefront neutrino research.

    “The combination of the completion of the Tevatron program and the new questions about neutrinos means that it’s an opportune time to redefine the focus of Fermilab,” Appel explained.

    “Everybody says: ‘It’s not like the old days,’ and it’s always true,” Appel said. “Experiments are bigger and more expensive, but people are just as excited about what they’re doing.”

    He added, “It’s different now but just as exciting, if not more so.”

    See the full article here.

    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics.

    ScienceSprings relies on technology from

    MAINGEAR computers



  • richardmitnick 11:58 am on August 29, 2014 Permalink | Reply
    Tags: , JUNO Experiment, Neutrinos,   

    From Symmetry: “Massive neutrino experiment proposed in China” 


    August 29, 2014
    Calla Cofield

    China’s neutrino physics program could soon expand with a new experiment aimed at cracking a critical neutrino mystery.

    Physicists have proposed building one of the largest-ever neutrino experiments in the city of Jiangamen, China, about 60 miles outside of Hong Kong. It could help answer a fundamental question about the nature of neutrinos.

    Jiangmen Underground Neutrino Observatory

    The Jiangmen Underground Neutrino Observatory, or JUNO, gained official status in 2013 and established its collaboration this month. Scientists are currently awaiting approval to start constructing JUNO’s laboratory near the Yangjiang and Taishan nuclear power plants. If it is built, current projections anticipate it will start taking data in 2020.

    The plan is to bury the laboratory in a mountain under roughly half of a mile of rock and earth, a shield from distracting cosmic rays. From this subterranean seat, JUNO’s primary scientific goal would be to resolve the question of neutrino mass. There are three known neutrino types, or flavors: electron, muon and tau. Scientists know the difference between the masses of each neutrino, but not their specific values—so they don’t yet know which neutrino is heaviest or lightest.

    “This is very important for our understanding of the neutrino picture,” says Yifang Wang, spokesperson for JUNO and director of the Institute of High Energy Physics of the Chinese Academy of Sciences. “For almost every neutrino model, you need to know which neutrino is heavier and which one is lighter. It has an impact on almost every other question about neutrinos.”

    To reach this goal, JUNO needs to acquire a hoard of data, which requires two key elements: a large detector and a high influx of neutrinos.

    The proposed detector design is called a liquid-scintillator—the same basic set-up used to detect neutrinos for the first time in 1956. The detector consists primarily of an acrylic sphere 34.5 meters (or nearly 115 feet) in diameter, filled with fluid engineered specifically for detecting neutrinos. When a neutrino interacts with the fluid, a chain reaction creates two tiny flashes of light. An additional sphere, made of photomultiplier tubes, would surround the ceramic sphere and capture these light signals.

    The more fluid the detector has, the more neutrino interactions the experiment can expect to see. Current liquid scintillator experiments include the Borexino experiment at the Gran Sasso Laboratory in Italy, which contains 300 tons of target liquid, and KamLand in Japan, which contains a 1000-ton target. If plans go ahead, JUNO will be the largest liquid scintillator detector ever built, containing 20,000 tons of target liquid.

    To discover the mass order of the three neutrino flavors, JUNO will look specifically at electron antineutrinos produced by the two nearby nuclear power plants.

    “Only in Asia are there relatively new reactor power plants that can have four to six reactor cores in the same place,” Wang says. With the potential to run four to six cores each, the Chinese reactors would send a dense shower of neutrinos toward JUNO’s detector. Over time, a picture of the antineutrino energies would emerge. The order of the neutrino masses influences what that energy spectrum looks like.

    Experiment representatives say JUNO could reach this goal by 2026.

    It’s possible that the NOvA experiment in the United States or the T2K experiment in Japan, both of which are currently taking data, could make a measurement of the neutrino mass hierarchy before JUNO. At least four proposed experiments could also reach the same goal. But only JUNO would make the measurement via this particular approach.

    The JUNO experiment would also tackle various other questions about the nature of neutrinos and refine some previously made measurements. If a supernova went off in our galaxy, JUNO would be able to observe the neutrinos it released. JUNO would also be the largest and most sensitive detector for geoneutrinos, which are produced by the decay of radioactive elements in the earth.

    Six nations have officially joined China in the collaboration: the Czech Republic, France, Finland, Germany, Italy and Russia. US scientists are actively participating in JUNO, but the United States is not currently an official member of the collaboration.

    See the full article here.

    Symmetry is a joint Fermilab/SLAC publication.

    ScienceSprings relies on technology from

    MAINGEAR computers



  • richardmitnick 11:31 am on August 29, 2014 Permalink | Reply
    Tags: , , Neutrinos   

    From Fermilab: “Physics in a Nutshell – Invisibility squared” 

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    Friday, Aug. 29, 2014
    Jim Pivarski

    What does it mean for something to be invisible? If it does not reflect light with the right wavelengths, it is not visible to humans, though it might be detected by a specialized instrument. Neutral particles, such as the neutrons in an atom, do not interact with photons of any wavelength (unless the wavelength is small enough to resolve individual charged quarks within the neutron). Thus, they are invisible to nearly every instrument that uses electromagnetic radiation to see.

    The former presence of a cat on the patio can be inferred from where the rain didn’t land. Similarly, sterile neutrinos may be inferred from their effects on normal neutrinos, which themselves are barely visible.

    The quark structure of the neutron. (The color assignment of individual quarks is not important, only that all three colors are present.)

    However, neutrons are easy to detect in other ways. They interact through the strong and weak nuclear forces, and neutron detectors take advantage of these interactions to “see” them. Neutrinos, on the other hand, are still more invisible, since they have no constituent quarks and interact only through the weak force. Billions of neutrinos pass through every square centimeter per second, but only a handful of these per day are detectable in a room-sized instrument.

    A proton, composed of two up quarks and one down quark. (The color assignment of individual quarks is not important, only that all three colors be present.)

    Now suppose there were another kind of neutrino that did not interact with the weak force. Physicists would call such a particle a sterile neutrino if it existed. How could it be detected? If something can’t be detected, does it even make sense to talk about it? Could there be a whole world of other particles, filling the same space we do, that can never be detected because they don’t interact with anything that interacts with our eyeballs?

    In principle, anything that has mass or energy can be detected because it interacts gravitationally. That is, if there were a sterile neutrino planet right next to the Earth, then it would change the way that satellites orbit: This is our gravitational detector. However, a small mass, such as an individual particle, would deflect orbits so little that it could not be detected in practice.

    Although sterile neutrinos would have no effect on ordinary matter, they could be detected through what they do to other neutrinos. Neutrinos of different types mix quantum mechanically. That is, muon neutrinos created by a muon beam can become electron neutrinos and tau neutrinos when they are detected. If there were a fourth, sterile, type of neutrino, then the visible neutrinos would also partly transition to sterile neutrinos in flight and change the fractions of the three visible types of neutrinos in the detector.

    In the mid-1990s, an experiment called LSND saw what looked like a sterile neutrino signal, so MiniBooNE, an experiment at Fermilab, studied the effect in more detail. As the MiniBooNE scientists investigated, the story got weirder: the numbers of visible neutrinos didn’t add up, but at different energies than expected. No simple explanation makes sense of the data, but it is possible that a sterile neutrino might. A future experiment, MicroBooNE, will study this phenomenon with higher sensitivity. It would be impressive if the key to new physics is an invisible particle, glimpsed only through its effect on nearly invisible particles!

    See the full article here.

    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics.

    ScienceSprings relies on technology from

    MAINGEAR computers



  • richardmitnick 11:12 am on August 29, 2014 Permalink | Reply
    Tags: , , Neutrinos   

    From Fermilab: “Frontier Science Result- ArgoNeuT 20 years later: Neutrino-induced coherent pions are back to Fermilab “ 

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    Friday, Aug. 29, 2014
    Edward Santos, Imperial College London, and Tingjun Yang, Fermilab

    The neutrino is known for how rarely it interacts with matter. But when it does, the interaction can take place numerous ways, and some interaction types happen more often than others. The ArgoNeuT experiment recently looked at one of the more rare cases — one that comes to only about 1 percent of all the possible ways a neutrino can interact. As one might expect, its infrequency poses a great challenge in our efforts to measure it.

    Display of an event captured in the ArgoNeuT detector. The track on the top corresponds to a muon, the one below it is a charged pion. These particles are produced by the interaction of a muon neutrino with an argon atom in the detector.

    This month, the ArgoNeuT collaboration released a new measurement of this rare interaction, called charged-current coherent pion production induced by neutrinos on nuclei. In this process, a neutrino interacts with a nucleus as a whole, producing a muon and a pion without breaking the nucleus apart or leaving it in an excited state. Seen in the detector, the events look like the one shown above, where two very forward-going tracks leave the interaction point.

    The quark structure of the pion.

    Historically, there have been only a handful of experiments that observed coherent pion production. Back in 1993, the FNAL E632 experiment, conducted using a 15-foot bubble chamber, measured interactions of this type at a neutrino energy of 70 to 90 GeV. In more recent years, the K2K and SciBooNE experiments also attempted to measure this cross section at a much lower energy (1 to 2 GeV) but found no sign of it in the charged-current channel. The null results motivated renewed interest by the theoretical community, who modified the favored models of the time and proposed new ones.

    These days, Fermilab’s ArgoNeuT and MINERvA collaborations are in hot pursuit of these interactions, measuring them using the low-energy NuMI beam. The ArgoNeuT collaboration has measured the likelihoods of charged-current pion production, reporting the interactions with neutrinos and antineutrinos at the mean energies of 3.6 GeV and 10 GeV, respectively. These measured probabilities, the results of a five-month run of antineutrino-enhanced NuMI beam, are in good agreement with theoretical predictions and are attracting much interest within the neutrino community.

    This is the first time that scientists measured the process in a liquid-argon detector and using an automated reconstruction. Researchers also once again demonstrated the potential of the liquid-argon technique for the measurement of neutrino interactions. Key pieces of this success were ArgoNeuT’s capabilities for precisely measuring the particles ejected from a neutrino interacting with an argon nucleus.

    Although ArgoNeuT’s small detector size limits the precision of this measurement, the techniques developed during this analysis will be used by future, larger experiments, such as MicroBooNE and LAr1-ND, to gain new insights into coherent pion production.

    See the full article here.

    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics.

    ScienceSprings relies on technology from

    MAINGEAR computers



  • richardmitnick 2:33 pm on August 27, 2014 Permalink | Reply
    Tags: , , , , , Neutrinos   

    From SPACE.com- “Power of the Sun: Elusive Solar Neutrinos Detected, a Cosmic First” 

    space-dot-com logo


    August 27, 2014
    Nola Taylor Redd

    Tiny particles forged in the heart of the sun have been detected for the first time, offering scientists a glimpse into the nuclear fusion core of our closest star.

    The subatomic particles, called neutrinos, are hallmarks of the dominant fusion process inside the sun. Created in the first step of a reaction sequence responsible for the majority of the sun’s fusion, the particles have long eluded detection. Now, an international collaboration of more than 100 scientists working with the Borexino detector in Italy has made the first measurements of these elusive particles.

    borexion detector
    This view shows the Borexino stainless steel sphere. The experiment made the first measurements of the difficult-to-detect solar neutrinos that power the sun.
    Credit: Borexino Collaboration

    The new findings “allow us to look at the majority of the fusion reactions in the sun’s core in real time, as they happen, minus an eight-minute delay for travel to Earth,” Andrea Pocar, of the University of Massachusetts and part of the Borexino team, told Space.com by email. “The measurement allows us to strongly confirm the model of the sun, and to take a ‘neutrino photograph’.” [The Sun Quiz: Do You Know Our Star?]

    borexino prototype
    This image shows the Borexino prototype. The experiment is designed to detect elusive particles like neutrinos.
    Credit: Borexino Collaboration

    Stars are giant fusion reactors, smashing protons together to produce energy. See how the heart of the sun works in this Space.com infographic.
    Credit: by Karl Tate, Infographics Artist

    ‘The most direct confirmation’

    Along with light, the sun streams neutrinos from its core out into space, bombarding a square inch of the Earth with about 420 billion particles per second. Although numerous, the low-energy neutrinos created through the proton-proton (pp) fusion process only interact with other material through the weak nuclear force, making their detection a challenge.

    The first step in the dominant fusion process in the sun starts when two protons in its core fuse into a deuteron, creating a pp neutrino. Other neutrinos are created in subsequent steps of the process, several of which have been detected, but the first-step neutrinos remained elusive.

    “They are the most direct confirmation that nuclear fusion is the source of energy [for the sun],” Wick Haxton, of the University of California, Berkeley, told Space.com. Haxton, a theorist who studies neutrino and nuclear astrophysics, is not a part of the Borexino collaboration.

    Scientists have sought to establish that the rate of energy generation at the solar core is consistent with the light shining from its surface. Neutrinos inside the heart of the sun take 100,000 years to reach the stellar surface before rushing outward at the speed of light. Comparing the sun’s energy emitted as the sun’s light with the energy from the core reveals information about the thermodynamic equilibrium of the star over tens of thousands of years.

    “This measurement directly confirms what we know about fusion processes in the sun from higher energy neutrinos and what we see from the surface of the sun,” Pocar said.

    Scientists studying the sun have detected solar neutrinos forged in the star’s heart for the first time. This infographic depicts how the discovery was made using the Borexino detector in Italy.
    Credit: Italian Institute for Nuclear Physics

    The new findings also reveal more about the nature of neutrinos themselves. The particles come in three types, or “flavors.” Those streaming from the solar core are “electron“-flavored. As they travel through space, they shift between “muon” and “tau” types. Combined with previous solar neutrino measurements, the Borexino experiment strongly confirmed the nature of the particles.

    So far, such effects have been seen only on the sun, Haxton said. The same effect can be used on Earth in so-called long-baseline neutrino beam experiments, which seek information about the complete ordering of neutrino masses.

    Fermilab LBNE
    Fermilab LBNE

    “It is important that we establish that we understand matter effects in the sun before using this effect to determine something as fundamental as neutrino masses,” Haxton said.

    The research was published online today (Aug. 27) in the journal Nature, along with Haxton’s corresponding News & Views article.

    The heart of the sun

    Buried beneath Italy’s Apennine Mountains, Borexino is shielded from the cosmic rays that interfere with detection of pp neutrinos by nearly a mile (1.4 kilometers) of rock. The onionlike layers surrounding the instrument, combined with its depth, make it the most radiation-free medium on the planet.

    Surrounded by 300 tons of liquid, the 2,200 sensors within the tanks capture interactions of the neutrinos with the material. The liquid resembling benzene is derived from some of the oldest petroleum found on the planet as part of an effort to eliminate the presence of carbon-14, whose decay covers up neutrino signals. Although most of the carbon-14 in the ancient material has decayed, the scientists continue to refine the process.

    “They did years of work to make the detector pure, eliminating trace amounts of radioactivity,” Haxton said.

    Contamination for the recent detections was reduced to less than 1 part per billion billion, he said.

    Borexino continues to make detections of pp neutrinos on a daily basis. Pocar expressed his interest in attempting to measure the product of the carbon-nitrogen-oxygen (CNO) cycle that makes up the remaining 1 percent of solar reactions. Though responsible for only a fraction of the fusion process in the sun, the CNO cycle dominates in massive stars with hotter cores.

    Currently, scientists can deduce the amount of elements other than hydrogen and helium—what astronomers term as metals—at the heart of the sun, but they cannot directly measure it. These measurements indicate that the core is relatively rich in elements such as carbon and nitrogen, while the outer shell is metal-poor. The metallicity of the two are related in the standard solar model, which assumes that the sun was homogeneous when it first formed.

    “Such a measurement directly probes the metallicity of the core,” Haxton said.

    Measurements of the interior could have implications for planet formation. According to Haxton, one theory is that the planets may have extracted a lot of the metal from the solar disk as the sun formed.

    “We might learn that a star’s surface metallicity is altered if that star harbors planets,” Haxton said.

    Such information could have an impact on how exoplanet hunters select their target stars.

    See the full article here.

    ScienceSprings relies on technology from

    MAINGEAR computers



  • richardmitnick 2:13 pm on August 5, 2014 Permalink | Reply
    Tags: , , , Neutrinos, ,   

    From Symmetry: “Neutrino researchers pull double duty” 


    August 05, 2014
    Hanae Armitage

    Neutrino researchers work collaboratively, sharing and comparing results to help advance the field of neutrino physics.

    For Philip Rodrigues, a postdoc at the University of Rochester, receiving a new dataset from the MINERvA neutrino experiment means two things: that one of the neutrino experiments in which he participates has met a milestone and that the other can verify some of its predictions.

    Rodrigues, who is a member of both MINERvA in the US and the T2K experiment in Japan, is not the only neutrino physicist to double dip like this. More than 50 percent of neutrino researchers work on multiple projects simultaneously.

    Scientists stand with the Minerva neutrino detector, located 330 feet underground at Fermi National Accelerator Laboratory.

    T2K experiment passes five-sigma threshold

    “You want the scientists designing future generations of experiments to have a broad experience in current neutrino research,” says Fermilab physicist Debbie Harris, co-leader of the MINERvA neutrino experiment. “So it’s great to have people on multiple projects.”

    Unlike collaborative neutrino researchers like Rodrigues, the neutrino is extremely anti-social. We can’t see it, we can’t feel it, and we don’t entirely understand it. But it may be important for understanding the formation of the universe.

    The elusive nature of neutrinos makes working together even more appealing. Scientists who share Fermilab’s neutrino beamline meet regularly to discuss neutrino flux, the quantity of neutrinos per unit area observed in the detectors, and how that information can inform their respective projects.

    “It’s impossible to have one detector that can measure every little last thing about the interaction at every neutrino energy that’s important,” Harris said. “So that’s why we need to have a lot of different experiments to help each other make these measurements.”

    Neutrino experiments are usually in one of two categories: interaction experiments and oscillation experiments. The primary goal of interaction experiments is to observe the way neutrinos interact with different materials. The primary goal of oscillation experiments is to observe the way neutrinos, which come in three types, change from one type to the next. Both types of experiments can give researchers insight into neutrino characteristics such as their masses and how the different types of neutrinos relate to each other.

    Both kinds of experiments shoot extremely intense beams of neutrinos at particle detectors, but the placement of the detector depends on the type of experiment. Detectors for oscillation experiments are located much farther away, miles from the neutrino source, to give the particles time to change.

    Data from interaction experiments is critical for scientists at oscillation experiments to understand how the particles will interact in their detectors.

    “Neutrinos are neutrinos, and we can measure how they interact with different nuclei, and those results can help us constrain models,” Harris says. “Then those models can be used for experiments that use the same type of target for their far detector.”

    In addition, data from similar experiments can be used to double-check one another.

    “I think the more data we can get, and the more measurements we can take, the more input we have to help us understand what’s going on in terms of the physics,” Rodrigues says. “It’s very useful, both for the individual experiment, as well as the advancement of the field as a whole.”

    See the full article here.

    Symmetry is a joint Fermilab/SLAC publication.

    ScienceSprings relies on technology from

    MAINGEAR computers



  • richardmitnick 5:08 pm on August 1, 2014 Permalink | Reply
    Tags: , CERN n-TOF, Neutrinos,   

    From CERN: “The first neutron beam hits EAR2″ 

    CERN New Masthead

    Antonella Del Rosso

    On 25 July 2014, about a year after construction work began, the Experimental Area 2 (EAR2) of CERN’s neutron facility n_TOF recorded its first beam. Unique in many aspects, EAR2 will start its rich programme of experimental physics this autumn.

    CERN nTOF New
    n-TOF at CERN

    The last part of the EAR2 beamline: the neutrons come from the underground target and reach the top of the beamline, where they hit the samples.

    Built about 20 metres above the neutron production target, EAR2 is in fact a bunker connected to the n_TOF underground facilities via a duct 80 cm in diameter, where the beamline is installed. The feet of the bunker support pillars are located on the concrete structure of the n_TOF tunnel and part of the structure lies above the old ISR building. A beam dump located on the roof of the building completes the structure.

    Neutrons are used by physicists to study neutron-induced reactions with applications in a number of fields, including nuclear waste transmutation, nuclear technology, nuclear astrophysics and medical physics. “The research programme that will be carried out at EAR2 is very broad and very important for CERN,” confirms Sergio Bertolucci, CERN’s Director for Research and Computing. “By combining the existing n_TOF facility and the new EAR2, CERN is now able to provide a unique infrastructure to the neutron physics community, which can be enriched by its contribution.”

    At EAR2, the neutron-induced reactions will be studied with very high accuracy and in very good experimental conditions thanks to the very high instantaneous neutron flux provided by the facility. The facility also includes a room, isolated by a concrete wall from the main experimental area, in which scientists will prepare the samples to be measured and where the data acquisition stations are located. “The first experiments will be installed this autumn and our schedule is full until the end of 2015,” says Enrico Chiaveri, spokesperson of the n_TOF collaboration.

    The reactions that will be studied at EAR2 sometimes require unencapsulated radioactive samples, which is why the whole facility is designed to be in class A, the most stringent standard for radiation protection currently in use. In particular, the dump comprises three different layers: the first one – made of borated polyethylene – to stop thermal neutrons, the second one – made of iron – to stop faster neutrons and the last one – concrete – to make everything radiation-tight. “The beam line of EAR2 is also well shielded and equipped with collimators and a large-aperture magnet for shaping the neutron beam and reducing the background caused by other particles produced in the spallation process,” adds Christina Weiss, n_TOF run coordinator and CERN fellow from the Vienna University of Technology.

    The first signal recorded by the various detectors at n_TOF’s EAR2 on 25 July.

    On 25 July, the much awaited moment came when the detectors – a combination of silicon sensors, MicroMegas and diamond detectors – measured the first neutron beam in EAR2. “It was a low-intensity beam,” says Frank Gunsing, n_TOF physics coordinator and a CERN scientific associate from CEA Saclay, “but it showed that the whole chain – from the spallation target to the experimental hall, including the sweeping magnet and the collimators – is working well and that we are ready to complete and commission this exciting new facility.”

    See the full article here.

    Meet CERN in a variety of places:

    Cern Courier



    CERN CMS New

    CERN LHCb New


    CERN LHC New

    LHC particles

    Quantum Diaries

    ScienceSprings is powered by MAINGEAR computers

  • richardmitnick 11:40 am on July 25, 2014 Permalink | Reply
    Tags: , , , , Neutrinos,   

    From Fermilab: “NOvA collaboration celebrates in northern Minnesota” 

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    Friday, July 25, 2014
    Fermilab Leah Hesla
    Leah Hesla

    In 2012, upon beholding the newly completed NOvA far-detector building in northern Minnesota, the University of Minnesota’s Marvin Marshak didn’t believe the collaboration would be able to adequately populate it. At the time, the mammoth structure, which is the length of two basketball courts and would house the future NOvA detector, impressed visitors with the full force of not only its size, but its emptiness.

    Fermilab NOvA Far detector

    “It was scary. We looked at this building and thought, ‘Are we really going to be able to fill this place up?'” said Marshak, NOvA laboratory director. “People looked like tiny little insects against the backdrop of the building.”

    His worries were needless. On Thursday, the NOvA collaboration celebrated the new detector, which now fills the building nicely, in Ash River, Minnesota.

    The celebration came near the conclusion of NOvA’s collaboration meeting, which took place in Minneapolis. Attendees took a one-day excursion to the far detector, 280 miles north, to see the detector.

    The collaboration also discussed the beginning of data taking with the full detectors in the next few weeks. A celebration at Fermilab is planned for later this year.

    NOvA, a Fermilab-hosted neutrino experiment, makes use of two detectors: a smaller, underground detector at Fermilab and the much larger, 14-kiloton detector in Minnesota. The neutrino beam, originating at Fermilab through the NuMI beamline, travels 500 miles from the near detector through the Earth to the far detector.

    Fermilab NUMI Tunnel project
    NumI Tunnel

    Fermilab NOvA experiment

    NOvA scientists will work to uncover the true mass ordering of neutrinos’ three types. They’ll also look for evidence of CP violation, which could help explain why there is so much more matter than antimatter in our universe and, thus, why we’re here.

    “We’re going to kick all the physics analyses into high gear and get ready for first publications,” said Indiana University’s Mark Messier, NOvA co-spokesperson. “We hope to have first results by the end of the year.”

    It’s been a long time coming. Researchers submitted a letter of intent to show their interest in a new neutrino experiment in 2002. In the years since, the collaboration has been hard at work designing, developing, producing and installing hardware, software, fiber optics and even the glue that would hold the kiloton-scale blocks’ components together.

    With almost all of the modules of the detector already taking data, it’s a new era for NOvA and the Fermilab neutrino program.

    “We’re excited to get this experiment up and running — we’ve been working toward this for a long time,” said Fermilab’s Pat Lukens, far detector manager.

    “For at least the next 10 years, there are only two long-baseline neutrino beam experiments in the world — NOvA and T2K,” Marshak said, referring to the Japanese experiment. “Some of the answers we’re looking for are going to come from the experiments that we have right now.”

    Fermilab LBNE
    Fermilab LBNE

    See the full article here.

    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics.

    ScienceSprings is powered by MAINGEAR computers

  • richardmitnick 10:27 am on July 8, 2014 Permalink | Reply
    Tags: , , , Neutrinos,   

    From Fermilab: “Director’s Corner – A new approach” 

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    Tuesday, July 8, 2014

    This article was written by
    Fermilab Director Nigel Lockyer

    Fermilab’s future is looking bright, following the release of the P5 report, which strongly recommends that the United States pursue a world-leading neutrino physics program hosted at Fermilab. Several additional key projects that Fermilab leads or participates in were also endorsed, including the CMS Phase I and Phase II upgrades, Mu2e, Muon g-2 and experiments to study dark energy, dark matter and the cosmic microwave background.

    CERN CMS New
    CMS at CERN

    Cosmic Background Radiation Planck
    CMB per Planck

    A new approach to our organization is required if we are to be successful in building all of these projects over the next decade while operating the accelerator complex at ever higher power for the neutrino program. At last week’s all-hands meeting, Fermilab’s new deputy laboratory director, Joe Lykken, was announced, new chief operating officer Timothy Meyer was introduced, and Fermilab’s new organizational structure was unveiled. The new organization aims to fulfill three main goals to ensure our success:

    Improving internal communication

    Our new organization replaces associate laboratory directors and sectors with chiefs who head offices that focus on a main thrust: accelerators, computing, finance, operations, projects, research or technology. An expanded senior management team will meet frequently to share information and coordinate activities, and the members will be responsible for helping me improve internal communication so that all employees understand the lab’s direction and priorities.

    Improving labwide coordination of construction projects

    The P5 report has poised Fermilab to carry out a suite of construction projects unprecedented in size and number for an [DOE] Office of Science laboratory. The newly created position of chief project officer, held by Mike Lindgren, will be accountable for the successful execution of this large suite of projects in tandem with the successful operation of our scientific program.

    Emphasizing neutrinos

    The creation of a new Neutrino Division, headed by Gina Rameika, provides a visible, organizational home for our short- and long-baseline neutrino program recommended by P5. The Neutrino Division will start small in the early fall and will grow over time as the neutrino program matures.

    Fermilab LBNE
    Fermilab LBNE

    Other key changes to our organization include the creation of an Office of Campus Strategy & Readiness, to be headed by Randy Ortgiesen and to include the Facilities Engineering Services Section. This new office will be responsible for forward planning for our lab’s aging infrastructure.

    I look forward to working with each and every one of you as we explore the exciting scientific opportunities ahead of us.

    See the full article here.

    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics.

    ScienceSprings is powered by MAINGEAR computers

  • richardmitnick 12:12 pm on June 24, 2014 Permalink | Reply
    Tags: , , , , , , Neutrinos, ,   

    From SLAC Lab: “SLAC, Stanford Scientists Play Key Roles in Confirming Cosmic Inflation” 

    SLAC Lab

    March 19, 2014
    Glennda Chui

    Chao-Lin Kuo and Kent Irwin Helped Develop Technology for Imaging Gravitational Waves

    Two scientists at Stanford University and SLAC National Accelerator Laboratory made key contributions to the discovery of the first direct evidence for cosmic inflation – the rapid expansion of the infant universe in the first trillionth of a trillionth of a trillionth of a second after the Big Bang.

    Chao-Lin Kuo is one of four co-leaders of the BICEP2 collaboration that announced the discovery on Monday. An assistant professor at SLAC and Stanford, he led the development of the BICEP2 detector and is building the BICEP3 follow-on experiment in his Stanford lab for deployment at the South Pole later this year.

    Chao-Lin Kuo at the South Pole research station where the BICEP2 experiment operated from 2010 to 2012. (Photo courtesy of Chao-Lin Kuo)

    BICEP 2
    BICEP With South Pole Telescope

    Kent Irwin invented the type of sensor used in BICEP2 as a graduate student at Stanford, adapted it for X-ray experiments and studies of the cosmos during a 20-year career at the National Institute for Standards and Technology, and returned to SLAC and Stanford as a professor in September to lead a major initiative in sensor development.

    Kent Irwin (Matt Beardsley/SLAC)

    Both are members of the Kavli Institute for Particle Physics and Astrophysics (KIPAC), which is jointly run by SLAC and Stanford.

    “It’s exciting that the same technology I developed as a grad student to search for tiny particles of dark matter is also being used to do research on the scale of the universe and to study the practical world of batteries, materials and biology in between,” Irwin said. His group is working toward installing a version of the BICEP2 sensors at SLAC’s X-ray light sources – Stanford Synchrotron Radiation Lightsource (SSRL) and Linac Coherent Light Source (LCLS) – as well as at a planned LCLS upgrade.

    Searching for Ripples in Space-time

    BICEP is a series of experiments that began operating at the South Pole in January 2006, taking advantage of the cold, clear, dry conditions to look for a faint, swirling polarization of light in the Cosmic Microwave Background (CMB) radiation. The light in the CMB dates back to 380,000 years after the Big Bang; before that, the early universe was opaque and no light could get through.

    Cosmic Background Radiation Planck
    CMB Planck

    But some theories predicted that gravitational waves – ripples in space-time – would have been released in the first tiny fraction of a second after the Big Bang, as the universe expanded exponentially in what is known as “cosmic inflation.” If that were the case, scientists might be able to detect the imprint of those waves in the form of a slight swirling pattern known as “B-mode polarization” in the CMB.

    On Monday, researchers from the BICEP2 experiment, which ran from January 2010 through December 2012, announced that they had found that smoking-gun signature, confirming the rapid inflation that had been theorized more than 30 years ago by Alan Guth and later modified by Andrei Linde, a Russian theorist who is now at Stanford.

    Building a Better Detector

    Kuo started working on BICEP1 as a postdoctoral researcher at Caltech in 2003. The circuitry in the experiment’s detectors was all made by hand. For the next-generation detector, BICEP2, the collaborating scientists wanted something that could be mass-produced in larger quantities, allowing them to pack more sensors into the array and collect data 10 times faster. So Kuo also started designing that technology, which used photolithography – a standard tool for making computer chips – to print sensors onto high-resolution circuit boards.

    The sun sets behind BICEP2 (in the foreground) and the South Pole Telescope (in the background). (Steffen Richter, Harvard University)

    The BICEP2 detector shown in this electron-beam micrograph works by converting the light from the cosmic microwave background into heat. A titanium film tuned on its transition to a superconducting state makes a sensitive thermometer to measure this heat. The sensors are cooled to just 0.25 degrees above absolute zero to minimize thermal noise. (Anthony Turner, JPL)

    In 2008 Kuo arrived at SLAC and Stanford and began working on the next-generation experiment, BICEP3, for which he is principal investigator. Scheduled for deployment at the South Pole later this year, BICEP3 will look at a larger patch of the sky and collect data 10 times faster than its predecessor; it’s also more sensitive and more compact.

    SLAC took on a bigger role in this research in October 2013 by awarding up to $2 million in Laboratory Directed Research and Development funding over three years for the “KIPAC Initiative for Cosmic Inflation,” with Kuo as principal investigator. The grant establishes a large-scale Cosmic Microwave Background program at the lab, with part of the funding going toward BICEP3, and has a goal of establishing KIPAC as a premier institute for the study of cosmic inflation. There are also plans to establish a comprehensive development, integration, and testing center at SLAC for technologies to further explore the CMB, which holds clues not only to gravitational waves and cosmic inflation but also to dark matter, dark energy and the nature of the neutrino.

    A Fancy Thermometer for Tiny Signals

    Kent Irwin entered the picture in the early 1990s, while a graduate student in the laboratory of Stanford/SLAC Professor Blas Cabrera. There he invented the superconducting Transition Edge Sensor, or TES, for the Cryogenic Dark Matter Search, which is trying to detect incoming particles of dark matter in a former iron mine in Minnesota. When he moved to NIST, he and his team adapted the technology for other uses and also developed a very sensitive way to read out the signal from the sensors with devices known as SQUID multiplexers.

    Printing TES devices on circuit boards and using the SQUID multiplexers to read them out made it possible to create large TES arrays and greatly expanded their applications in astronomy, nuclear non-proliferation, materials analysis and homeland defense. It was also the key factor in allowing the BICEP team to expand the number of detectors in its experiments from 98 in BICEP1 to 500 in BICEP2, and opens the path to even larger arrays that will greatly increase the sensitivity of future experiments.

    A TES is “basically a very fancy thermometer,” Irwin says. “We’re measuring the power coming from the CMB.” The TES receives a microwave signal from an antenna and translates it into heat; the heat then warms a piece of metal that’s chilled to the point where it hovers on the edge of being superconducting – conducting electricity with 100 percent efficiency and no resistance. When a material is at this edge, a tiny bit of incoming heat causes a disproportionately large change in resistance, giving scientists a very sensitive way to measure small temperature changes. The TES devices for BICEP2 were built at NASA’s Jet Propulsion Laboratory, and Irwin’s team at NIST made the SQUID multiplexers.

    The Road Ahead

    Looking ahead, CMB researchers in the United States developed a roadmap leading to a fourth-generation experiment as part of last year’s Snowmass Summer Study, which lays out a long-term direction for the national high energy physics research program. That experiment would deploy hundreds of thousands of detector sensors and stare at a much broader swath of the cosmos at an estimated cost of roughly $100 million.

    “These are incredibly exciting times, with theory, technology and experiment working hand in hand to give us an increasingly clear picture of the very first moments of the universe,” said SLAC Lab Director Chi-Chang Kao. “I want to congratulate everyone in the many collaborating institutions who made this spectacular result possible. We at SLAC are looking forward to continuing to invest and work in this area as part of our robust cosmology program.”

    See the full article here.

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.

    ScienceSprings is powered by MAINGEAR computers

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc

Get every new post delivered to your Inbox.

Join 326 other followers

%d bloggers like this: