Tagged: Neutrinos Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:12 pm on November 21, 2014 Permalink | Reply
    Tags: , , , , , Neutrinos   

    From IceCube: “Neutrino, measuring the unexpected” 

    icecube
    IceCube South Pole Neutrino Observatory

    Francis Halzen, IceCube Principal Investigator, explains the search for high-energy neutrinos in this three party story of neutrinos. Produced by IFIC, Directed by Javier Diez. [Sorry, I cannot come up with Parts 1 and 3. But this video stands on its own merit.]

    Watch, enjoy. learn.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    ICECUBE neutrino detector
    IceCube is a particle detector at the South Pole that records the interactions of a nearly massless sub-atomic particle called the neutrino. IceCube searches for neutrinos from the most violent astrophysical sources: events like exploding stars, gamma ray bursts, and cataclysmic phenomena involving black holes and neutron stars. The IceCube telescope is a powerful tool to search for dark matter, and could reveal the new physical processes associated with the enigmatic origin of the highest energy particles in nature. In addition, exploring the background of neutrinos produced in the atmosphere, IceCube studies the neutrinos themselves; their energies far exceed those produced by accelerator beams. IceCube is the world’s largest neutrino detector, encompassing a cubic kilometer of ice.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 9:35 pm on November 17, 2014 Permalink | Reply
    Tags: , Neutrinos, ,   

    From PPPL: “PPPL, Princeton launch hunt for Big Bang particles offering clues to the origin of the universe” 


    PPPL

    November 17, 2014
    John Greenwald

    Billions upon billions of neutrinos speed harmlessly through everyone’s body every moment of the day, according to cosmologists. The bulk of these subatomic particles are believed to come straight from the Big Bang, rather than from the sun or other sources. Experimental confirmation of this belief could yield seminal insights into the early universe and the physics of neutrinos. But how do you interrogate something so elusive that it could zip through a barrier of iron a light-year thick as if it were empty space?

    At the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL), researchers led by Princeton University physicist Chris Tully are set to hunt for these nearly massless Big Bang relics by exploiting a curious fact: Neutrinos can be captured by tritium, a radioactive isotope of hydrogen, and provide a tiny boost of energy to the electrons — or beta particles — that are emitted in tritium decay.

    Tully has created a prototype lab at PPPL to detect Big Bang neutrinos by measuring the extra energy they impart to the electrons — and to achieve this with greater precision than has ever been done before. Spotting these neutrinos is akin to “detecting a faint heartbeat in a sports arena filled to the brim” said Charles Gentile, who heads engineering for the project, which Tully has dubbed PTOLEMY for “Princeton Tritium Observatory for Light, Early Universe Massive Neutrino Yield.” Ptolemy was an ancient Greek astronomer who lived in Egypt during the first century.

    Darkest, coldest conditions achievable

    The task calls for measuring the energy of an electron with a precision comparable to detecting the mass of a neutrino, which until recently was thought to have no mass at all. Such measurements require the darkest, coldest conditions achievable in a laboratory and the use of quantum electronics — a discipline that deals with the effect of quantum mechanics on the behavior of electrons in matter — to detect the minute extra energy that a Big Bang neutrino would impart. Quantum mechanics describes the motion and direction of subatomic particles.

    Why is the energy that a Big Bang neutrino provides so extraordinarily small? What’s unique about these relics is that their wavelength has been stretched and cooled as the space-time we live in has expanded over approximately 13.7 billion years. This expansion has cooled a tremendous number of neutrinos to temperatures that are billions of times colder, and therefore less energetic, than those of neutrinos originating from the sun. When tritium captures these cold neutrinos, they create a narrow peak in energy that is just above the maximum energy of an electron from tritium decay.

    The difficulty in identifying a Big Bang relic doesn’t end there. Since neutrinos can take different forms, the height of the peak could be higher or lower by a factor of two, depending on whether the neutrino is like normal matter with a corresponding particle of antimatter — an antineutrino — or whether the neutrino is different and is in fact its own antiparticle. The extra height might not appear at all if neutrinos decay over billions of years into yet unknown, lighter particles.

    Cutting-edge technology

    Tully aims to show that the prototype for PTOLEMY, which is housed in a basement site at PPPL, can indeed achieve the precision needed to detect Big Bang neutrinos. The cutting-edge technology could then become the basis for a major experiment at PPPL to test long-held assumptions about the density of Big Bang neutrinos throughout the universe.

    b
    Chris Tully, front left, and Charles Gentile, front right, with participants in the PTOLEMY project under construction. Back row from left: Irving Zatz, Robert Woolley, Lloyd Ciebiera, Junast Suerfu, Doug Westover, Philip G. Efthimion, William Sands, Jim Taylor. (Photo by Elle Starkman / PPPL Office of Communications)

    Confirming the assumptions could validate the standard model of the origin of the universe, Tully says, while refuting them could overturn the model and prompt new ideas about the Big Bang and its aftermath. Finding the neutrinos could also show if they could be a source of the invisible dark matter that scientists say makes up 20 percent of the total mass of the universe.

    Such discoveries could be epochal. Could the project “make long-term contributions to the understanding of the universe?” Tully asks in presentations about PTOLEMY. “Absolutely!” he says. “We believe that we live in a sea of 14 billion-year-old neutrinos all around us. But is it true?”

    The prototype at PPPL may hold the key to finding out. The device consists of a pair of superconducting magnets connected to opposite ends of a five-foot cylindrical vacuum chamber. A source containing a tiny bit of tritium sits inside one end of the chamber, with a calorimeter that Argonne National Laboratory is providing to measure electron energy set at the other end. The experiment will bind electrons from the tritium decay to magnetic field lines and pass them through filters in the vacuum chamber that will remove all but the highest-energy electrons, which the calorimeter will then measure.

    Preventing “noise”

    Great care will be taken to keep random thermal “noise” from disrupting the finely tuned equipment at each end of the experiment. Researchers will deposit the tritium on the nanomaterial graphene — a layer of carbon just one atom thick — to ensure that the electrons come off cleanly into the vacuum.

    The calorimeter at the other end of the chamber will be connected to a dilution refrigerator set at between 70 and 100 millikelvins, a temperature 20 times colder than deep space and less than one-tenth of a degree above absolute zero. This deep-freeze will keep the calorimeter poised between a superconducting state — one in which electrons can flow with virtually no resistance — and a non-superconducting state with resistance to the flow of electrons. The delicate balance between these two states, combined with extremely low noise conditions achievable only with quantum electronics, will provide the sensitivity needed to precisely measure the energy of an electron that impinges upon the calorimeter. The setup will produce “the most precise electron-energy measurements ever made using calorimeter techniques,” Tully said.

    This experiment is “a perfect match for the competencies and capabilities that exist at PPPL,” said Adam Cohen, deputy director for operations at PPPL and supervisor of the PTOLEMY project. Such qualities include know-how in handling tritium, a laboratory for synthesizing nanomaterial, decades of experience operating magnets and vacuum vessels, and space for an expanded experiment. “Chris and I talked about collaboration between PPPL and the University about three years ago,” Cohen recalled. “Every time we pursue an activity with the campus it strengthens the bridge that exists between us.”

    Looking ahead, Cohen sees PTOLEMY attracting new students, researchers and visitors, along with experts in high-energy physics, to PPPL. This could produce cross-fertilization with the Laboratory’s core mission of advancing fusion and plasma science, he said.

    For Tully, PTOLEMY could become the gateway to many avenues of research. “When one opens a new frontier of exploration,” he noted, “there is no telling what will be found and learned.”

    ct
    Chris Tully making adjustments (Photo by Elle Starkman / PPPL Office of Communications)

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 9:05 pm on November 17, 2014 Permalink | Reply
    Tags: , , Neutrinos   

    From IceCube: “A new polar season for IceCube” 

    icecube
    IceCube South Pole Neutrino Observatory

    17 Nov 2014
    Silvia Bravo

    After a long winter, South Pole inhabitants are getting used to the sunlight again. Up north, a bunch of IceCubers are getting ready for their Antarctic adventure. For some of them, it’s all about the excitement of a first trip to Antarctica. For some others, it’s an almost annual appointment that makes their job a special one.

    Erik Beiser and Stephan Richter, the new 2014-15 IceCube winterovers, stepped onto South Pole ice on November 6 with the first flight of the season. They are there to stay for a year: first enjoying the hectic months of the austral summer at the Admundsen-Scott South Pole Station, and then becoming two of the solitary souls in the darkness of the austral winter.

    4
    Four IceCube winterovers: from left to right, Erik and Stephan (2014-2015), Dag and Ian (2013-2014). Image: Ralf Auer. IceCube/NSF.

    Now it’s time to finish their training. The incoming winterovers have learned about the IceCube data taking systems in Madison and also about other South Pole systems in Denver. Their expertise is further solidified on-ice through their interactions with the outgoing winterovers, Dag Larsen and Ian Rees.

    Other activities during this season include the maintenance and updates of the computing and power units in the IceCube Lab (ICL). “This year, new power distribution units will allow IceCube winterovers to monitor some of our custom-built readout systems, the so-called DOMHubs, from the station without requiring them to walk out to the laboratory,” says Ralf Auer, who is the system administrator for the South Pole data center. The walk to the ICL is about 1 km long, a short scenic route when the weather is nice that can feel like a long nightmare with wind and temperature approaching -100 F.

    path
    The path to the ICL in October 2014. Image: Dag Larsen. IceCube/NSF

    “The remote-controlled units will help to reduce detector downtime and start data taking faster after a system crash,” explains Auer. Ian and Dag, now leaving the Pole, have set a new record for IceCube uptime, at 99.5% on average during the last year. The new system might help Erik and Stephan, the brand new winterovers, to improve this register.

    Moreover, the disk array storage deployed last year has proven to be stable and reliable and will grow to become the main on-site IceCube data storage system, replacing the old magnetic tapes.

    Also new for this season are planned IceTop measurements to better understand how the accumulated snow might be affecting the performance of the detector. About 20-25 cm of snow accumulates on top of each IceTop tank every year, with snow heights up to 2.5 m measured these days. “Initially, we thought that we could keep snow level limited, but currently snow management is too expensive at the Pole. As the accumulated snow grows, we want to improve our understanding of its impact on what IceTop measures,“ explains Sam De Ridder, a graduate student at University of Ghent, who will be traveling to Antarctica in early January.

    IceTop was designed to detect the showers of particles created by the interaction of cosmic rays with the atmosphere. However, due to the accumulated snow, IceTop is becoming more and more sensitive to muons compared to the electromagnetic part of the air shower. A good knowledge of the muon signal in the shower is very important for measurements of the cosmic ray composition but also for using IceTop as a veto for neutrino searches in IceCube.

    For this reason, several measurements of the muon signal around the tanks will be performed during this season, as well as more detailed measurements of the snow density. “We are pretty confident that with these measurements we can improve the handling of the snow in IceTop and gain more knowledge for the future IceCube surface extensions,” adds De Ridder.

    pl
    The arrival of an LC-130 is a sign that the summer activities are ongoing. Image: IceCube/NSF

    Even with the IceTop measurements and some further activities, this is not a busy season for IceCube. “It will be a light workload for Cubers at the Pole this year, probably the least amount of activity for IceCube since the 2002/2003 season. Our population is down to 16 compared to 100 during peak construction. We are shipping only 3800 pounds of cargo, and we used to have about 25,000 pounds for each IceCube string,” says Jim Haugen, who is responsible for IceCube’s South Pole planning and logistics.

    Researchers from US, Germany, Belgium and Korea will make sure that everything is ready for another year of data-taking. “I am excited for the 10 IceCube first-timers who will be working at Pole this year. It’s always thrilling to arrive at Pole, but nothing beats that first time when the Herc glides to a stop and the loadmaster opens the door flooding the plane with very cold air prior to leaving the plane,” adds Haugen.

    Among the fortunate Antarctic travelers, Armando Caussade of Puerto Rico is the NSF/PolarTREC teacher who will participate in some of the IceCube activities and engage more Hispanic students in astrophysics research. Follow his journal here.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    ICECUBE neutrino detector
    IceCube is a particle detector at the South Pole that records the interactions of a nearly massless sub-atomic particle called the neutrino. IceCube searches for neutrinos from the most violent astrophysical sources: events like exploding stars, gamma ray bursts, and cataclysmic phenomena involving black holes and neutron stars. The IceCube telescope is a powerful tool to search for dark matter, and could reveal the new physical processes associated with the enigmatic origin of the highest energy particles in nature. In addition, exploring the background of neutrinos produced in the atmosphere, IceCube studies the neutrinos themselves; their energies far exceed those produced by accelerator beams. IceCube is the world’s largest neutrino detector, encompassing a cubic kilometer of ice.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 2:50 pm on November 13, 2014 Permalink | Reply
    Tags: , , , , , Neutrinos   

    NASA November 13 2014: “NASA X-ray Telescopes Find Black Hole May Be a Neutrino Factory” 

    NASA

    NASA

    November 13, 2014
    Janet Anderson
    NASA Marshall Space Flight Center, Huntsville, Ala.
    256-544-6162
    janet.l.anderson@nasa.gov

    Megan Watzke
    Chandra X-ray Center, Cambridge, Mass.
    617-496-7998
    mwatzke@cfa.harvard.edu

    The giant black hole at the center of the Milky Way may be producing mysterious particles called neutrinos. If confirmed, this would be the first time that scientists have traced neutrinos back to a black hole.

    The evidence for this came from three NASA satellites that observe in X-ray light: the Chandra X-ray Observatory, the Swift gamma-ray mission, and the Nuclear Spectroscopic Telescope Array (NuSTAR).

    NASA Chandra Telescope
    NASA/Chandra

    NASA SWIFT Telescope
    NASA/Swift

    NASA NuSTAR
    NASA/NuSTAR

    Neutrinos are tiny particles that carry no charge and interact very weakly with electrons and protons. Unlike light or charged particles, neutrinos can emerge from deep within their cosmic sources and travel across the universe without being absorbed by intervening matter or, in the case of charged particles, deflected by magnetic fields.

    The Earth is constantly bombarded with neutrinos from the sun. However, neutrinos from beyond the solar system can be millions or billions of times more energetic. Scientists have long been searching for the origin of ultra-high energy and very high-energy neutrinos.

    “Figuring out where high-energy neutrinos come from is one of the biggest problems in astrophysics today,” said Yang Bai of the University of Wisconsin in Madison, who co-authored a study about these results published in Physical Review D. “We now have the first evidence that an astronomical source – the Milky Way’s supermassive black hole – may be producing these very energetic neutrinos.”

    Because neutrinos pass through material very easily, it is extremely difficult to build detectors that reveal exactly where the neutrino came from. The IceCube Neutrino Observatory, located under the South Pole, has detected 36 high-energy neutrinos since the facility became operational in 2010.

    ICECUBE neutrino detector
    IceCube

    By pairing IceCube’s capabilities with the data from the three X-ray telescopes, scientists were able to look for violent events in space that corresponded with the arrival of a high-energy neutrino here on Earth.

    “We checked to see what happened after Chandra witnessed the biggest outburst ever detected from Sagittarius A*, the Milky Way’s supermassive black hole,” said co-author Andrea Peterson, also of the University of Wisconsin. “And less than three hours later, there was a neutrino detection at IceCube.”

    sa
    sa2
    Two images of Sagittarius A* from NASA/Chandra

    In addition, several neutrino detections appeared within a few days of flares from the supermassive black hole that were observed with Swift and NuSTAR.

    “It would be a very big deal if we find out that Sagittarius A* produces neutrinos,” said co-author Amy Barger of the University of Wisconsin. “It’s a very promising lead for scientists to follow.”

    Scientists think that the highest energy neutrinos were created in the most powerful events in the Universe like galaxy mergers, material falling onto supermassive black holes, and the winds around dense rotating stars called pulsars.

    The team of researchers is still trying to develop a case for how Sagittarius A* might produce neutrinos. One idea is that it could happen when particles around the black hole are accelerated by a shock wave, like a sonic boom, that produces charged particles that decay to neutrinos.

    This latest result may also contribute to the understanding of another major puzzle in astrophysics: the source of high-energy cosmic rays. Since the charged particles that make up cosmic rays are deflected by magnetic fields in our Galaxy, scientists have been unable to pinpoint their origin. The charged particles accelerated by a shock wave near Sgr A* may be a significant source of very energetic cosmic rays.

    The paper describing these results is available online. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra’s science and flight operations.

    See the full article here.

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble,
    Chandra, Spitzer ]and associated programs. NASA shares data with various national and international organizations such as from the Greenhouse Gases Observing Satellite.


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 1:58 pm on November 12, 2014 Permalink | Reply
    Tags: , , Fermilab Neutrino Division, , Neutrinos,   

    From FNAL: “From the Neutrino Division – The new Neutrino Division” 


    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    Wednesday, Nov. 12, 2014

    rc
    Regina Rameika, head of the Neutrino Division, wrote this column.

    Neutrino experiments have played a big part in Fermilab’s 47-year history, and we are now working to make them an even bigger part of Fermilab’s future. As we plan for the next 40 years, we strive to fulfill an important element of the laboratory’s vision: to lead the world in neutrino science with particle accelerators. To enable this vision, in July Director Lockyer announced the formation of a Neutrino Division at Fermilab.

    The initial goal of this new organization is to provide a visible home with administrative and technical support for the laboratory’s current and planned neutrino experiments. In October, about 70 staff, guest scientists and international fellows became the first members of the new division.

    The organization is starting out small, with two very well-defined tasks. The first is to focus on operating the experiments in the NuMI and Booster neutrino beams: MicroBooNE, MINERvA, MINOS+ and NOvA. The second, aligning ourselves with the P5 plan, is to develop in a coordinated way a world-leading program of short- and long-baseline neutrino experiments. The division will host the Long-Baseline Neutrino Facility (LBNF) project team as well as the staff and user community who are joining this effort.

    The Neutrino Division is beginning to grow a new group focused on optimizing beam designs and modeling for existing as well as future neutrino beams. It has a Technical Support Department, including a team of engineers specializing in cryogenic systems to operate and design liquid-argon neutrino detectors, which are the key elements in both the short-baseline and LBNF programs. We expect the engineering team to grow as the new projects mature and require more design effort. The Technical Support Department also includes the Operations Support Group, which supports the current and future experiments either directly or as experiment liaisons with the other divisions and sections of the laboratory.

    As a new division, we are learning many of the complexities involved in running an organization, including managing personnel with the new FermiWorks system, planning budgets and finding office space for staff and users. We approach these challenges with an eye for improvement from the “way we’ve always done it” to better ways of doing things. Being a small division, we need to be nimble and versatile. Cross-training and succession planning will be key to our success.

    It’s an exciting time for neutrino research at Fermilab. All of us at the Neutrino Division look forward to our role in building the laboratory’s future.

    To learn more about the new Neutrino Division and watch us evolve, please visit our website.

    See the full article here.

    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 1:57 pm on November 6, 2014 Permalink | Reply
    Tags: , , Neutrinos   

    From FNAL: “Physics in a Nutshell Nine weird facts about neutrinos” 


    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    Thursday, Nov. 6, 2014
    Tia Miceli

    We don’t know much about neutrinos, but what we do know points to renegade particles that, despite their prevalence, are hard to pin down. Here are, in a nutshell, nine neutrino nuggets that scientists have figured out so far.

    neut
    Neutrinos change their flavor just as chameleons can change color. The observer needs to make sure their instruments are prepared to detect these changing beasts.

    1. Neutrinos are super abundant. The shining sun sends 65 billion neutrinos per second per square centimeter to Earth. Neutrinos are the second most abundant particle in the universe. If we were to take a snapshot, we’d see that every cubic centimeter has approximately 1,000 photons and 300 neutrinos.

    2. Neutrinos are almost massless. No one yet knows the mass of neutrinos, but it is at least a million times less massive than the lightest particle we know, the electron. We do know that each is so lightweight and so abundant that the total mass of all neutrinos in the universe is estimated to be equal to the total mass of all of the visible stars.

    3. Neutrinos are perfect probes for the weak force. All other fundamental particles interact through the strong, electromagnetic or weak force or through some combination of the three. Neutrinos are the only particles that interact solely though the weak force. This makes neutrinos important for nailing down the details of the weak force.

    4. Neutrinos are really hard to detect. On average, only one neutrino from the sun will interact with a person’s body during his or her lifetime. Since neutrino interactions are so rare, neutrino detectors must be huge. Super Kamiokande in Japan is as tall as Wilson Hall and holds 50,000 tons of ultrapure water. IceCube is buried between 1.5 and 2.5 kilometers under pure and clear ice in Antarctica, instrumenting a full cubic kilometer of ice.

    Super-Kamiokande experiment Japan
    Super Kamiokande

    ICECUBE neutrino detector
    IceCube

    5. Neutrinos are like chameleons. There are three flavors of neutrinos: electron, muon and tau. As a neutrino travels along, it may switch back and forth between the flavors. These flavor “oscillations” confounded physicists for decades.

    6. Neutrinos of electron flavor linger around electrons. When neutrinos travel through matter, they see dense clouds of electrons. Electron neutrinos will have trouble traversing these dense clouds, effectively slowing down while muon and tau flavors travel through unimpeded. The NOvA experiment is using this phenomenon to deduce more information about the neutrino masses.

    FNAL NOvA experiment
    FNAL/Nova

    7. Neutrinos let us see inside the sun. The light that reaches Earth takes 10,000 to 100,000 years to escape the thick plasma of the sun’s core. When light reaches the solar surface, it freely streams through open space to our planet in only 8 minutes. Neutrinos provide us a penetrating view into the core, where nuclear fusion powers the sun. They take only 3.2 seconds to escape to the solar surface and 8 minutes to reach Earth.

    8. Neutrinos may have altered the course of the universe. Why is everything in the universe made predominantly of matter and not antimatter? Cosmologists think that at the start of the universe there were equal parts of matter and antimatter. Neutrino interactions may have tipped this delicate balance, enabling the formation of galaxies, stars and planets like our own Earth.

    9. Neutrinos dissipate more than 99 percent of a supernova’s energy. Certain types of stellar explosions lose nearly all of their energy through neutrinos. These “core collapse” supernovae [Type II] end as either a black hole or a neutron star. Neutrinos are used to understand how supernovae explode and tell us more about other astronomical objects like active galactic nuclei.

    See the full article here.

    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 4:05 pm on October 28, 2014 Permalink | Reply
    Tags: , CUORE collaboration, , Neutrinos   

    From LBL: “Creating the Coldest Cubic Meter in the Universe” 

    Berkeley Logo

    Berkeley Lab

    October 28, 2014
    Kate Greene 510-486-4404

    In an underground laboratory in Italy, an international team of scientists has created the coldest cubic meter in the universe. The cooled chamber—roughly the size of a vending machine—was chilled to 6 milliKelvin or -273.144 degrees Celsius in preparation for a forthcoming experiment that will study neutrinos, ghostlike particles that could hold the key to the existence of matter around us.

    cube
    Scientist inspect the cryostat of the of the Cryogenic Underground Observatory for Rare Events. Credit: CUORE collaboration

    The collaboration responsible for the record-setting refrigeration is called the Cryogenic Underground Observatory for Rare Events (CUORE), supported jointly by the Istituto Nazionale di Fisica Nucleare (INFN) in Italy, and the Department of Energy’s Office of Science and National Science Foundation in the US. Lawrence Berkeley National Lab (Berkeley Lab) manages the CUORE project in the US. The CUORE collaboration is made of 157 scientists from the U.S., Italy, China, Spain, and France, and is based in the underground Italian facility called Laboratori Nazionali del Gran Sasso (LNGS) of the INFN.

    “We’ve been building this experiment for almost ten years,” says Yury Kolomensky, senior faculty scientist in the Physics Division of Berkeley Lab, professor of physics at UC Berkeley, and U.S. spokesperson for the CUORE collaboration. “This is a tremendous feat of cryogenics. We’ve exceeded our goal of 10 milliKelvin. Nothing in the universe this large has ever been as cold.”

    The chamber, technically called a cryostat, was designed and built in Italy, and maintained the ultra-cold temperature for more than two weeks. An international team of physicists, including students and postdoctoral scholars from Italy and the US, worked for over two years to assemble the cryostat, iron out the kinks, and demonstrate its record-breaking performance. The claim that no other object of similar size and temperature – either natural or man-made – exists in the universe was detailed in a recent paper by Jonathan Ouellet, Berkeley Lab Nuclear Science staff and UC Berkeley graduate student.

    In order to achieve such a low-temperature cryostat, the team used a multi chamber design that looks something like Russian nesting dolls: six chambers in total, each becoming progressively smaller and colder.

    dolls
    An illustration of the cross-section of the cryostat with a human figure for scale. Credit: CUORE collaboration

    The chambers are evacuated, isolating the insides from the room temperature, like in a thermos. The outer chambers are cooled to the temperature of liquid helium with mechanical coolers called pulse tubes – which do not require expensive cryogenic liquids. The innermost chamber is cooled using a process similar to traditional refrigeration in which a fluid evaporates and takes heat along with it. The only fluid that operates at such cold temperatures, however, is liquid helium. The researchers use a mixture of Helium-3 and Helium-4 that continuously circulates in a specialized cryogenic unit called dilution refrigerator, removing any remnant heat energy from the smallest chamber. The CUORE dilution refrigerator, built by Leiden Cryogenics in Netherlands, is one of the most powerful in the world. “It’s a Mack truck of dilution refrigerators,” Kolomensky says.

    The ultimate purpose for the coldest cubic meter in the universe is to house a new ultra-sensitive detector. The goal of CUORE is to observe a hypothesized rare process called neutrinoless double-beta decay. Detection of this process would allow researchers to demonstrate, for the first time, that neutrinos are their own antiparticles, thereby offering a possible explanation for the abundance of matter over anti-matter in our universe —in other words, why the galaxies, stars, and ultimately people exist in the universe at all.

    To detect neutrinoless double-beta decay, the team is using a detector made of 19 independent towers of tellurium dioxide (TeO2) crystals. Fifty-two crystals, each a little smaller than a Rubik’s cube, make up each tower. The team expects that they would be able to see evidence of the rare radioactive process within these cube-shaped crystals because the phenomenon would produce a barely detectable temperature rise, picked up by highly sensitive temperature sensors.

    Berkeley Lab, with Lawrence Livermore National Lab, has supplied roughly half the crystals for the CUORE project. In addition, Berkeley Lab designed and fabricated the highly sensitive temperature sensors – Neutron Transmutation Doped thermistors invented by Eugene Haller, UC Berkeley faculty and senior faculty scientist in the Material Science Division.

    UC postdocs Tom Banks and Tommy O’Donnell, who also have joint appointments with the Nuclear Science Division at Berkeley Lab, led the international team of physicists, engineers, and technicians to assemble over ten thousand parts into towers in nitrogen-filled glove boxes, including and bonding almost 8000 25-micron gold wires to 100-micron sized pads on the temperature sensors and on copper pads connected to detector wiring.

    The last of the 19 towers has recently been completed; all towers are now safely stored underground at LNGS, waiting to occupy the record-breaking vessel. The coldest cubic meter in the known universe is not just the feat of engineering; it will become a premier science instrument next year.

    US-CUORE team was lead by late Prof. Stuart Freedman until his untimely passing in 2012. Other current and former Berkeley Lab members of the CUORE collaboration not previously mentioned include US Contractor Project Manager Sergio Zimmermann (Engineering Division), former US Contractor Project Manager Richard Kadel (Physics Division, retired), staff scientists Jeffrey Beeman (Materials Science Division), Brian Fujikawa (Nuclear Science Division), Sarah Morgan (Engineering), Alan Smith (EH&S), postdocs Raul Hennings-Yeomans (UCB and NSD), Ke Han (NSD, now Yale), and Yuan Mei (NSD), graduate students Alexey Drobizhev and Sachi Wagaarachchi (UCB and NSD), and engineers David Biare, Lucio di Paolo (NSD and LNGS), and Joseph Wallig (Engineering).

    For more information: CUORE collaboration news release here.

    See the full article here.

    A U.S. Department of Energy National Laboratory Operated by the University of California

    University of California Seal

    DOE Seal

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 3:39 pm on October 28, 2014 Permalink | Reply
    Tags: , , Neutrinos   

    From ICECUBE: “Atmospheric neutrino oscillations measured with three years of IceCube data” 

    icecube
    IceCube South Pole Neutrino Observatory

    28 Oct 2014
    Silvia Bravo

    The IceCube Neutrino Observatory at the South Pole continues to contribute new ways to tackle some of the big questions in astrophysics and neutrino physics research. Results on extraterrestrial neutrinos, cosmic-ray anisotropy, dark matter searches and now neutrino oscillations have proven IceCube to be a powerful tool for exploring the unknown universe using high-energy particles produced in Nature.

    Last year, an initial measurement of the neutrino oscillation parameters was a hint that IceCube could become an important detector for studying neutrino oscillations. Today, the IceCube Collaboration has submitted new results to Physical Review Letters that present an improved measurement of the oscillation parameters, via atmospheric muon neutrino disappearance, which is compatible and comparable in precision to those of dedicated oscillation experiments such as MINOS, T2K or Super-Kamiokande.

    graph
    90 % confidence contours of the result in comparison with the ones of the most sensitive experiments. To the sides of the figure, the log-likelihood profiles for individual oscillation parameters are given. Normal mass hierarchy is assumed. Image: IceCube Collaboration

    Super-Kamiokande was the first experiment to claim the discovery of neutrino oscillations in 1998 from observing a deficit of atmospheric muon neutrino interactions in its detector.

    In contrast to the man-made, water-filled vessel of Super-Kamiokande, IceCube uses a natural target material, the glacier ice at the South Pole. This has the advantage of a much larger observation volume and therefore a larger number of events at shorter time scales. A disadvantage is that the optical properties of ice are more complex. The corresponding uncertainties are taken into account in the systematical errors of the IceCube result.

    “Today, both Super-Kamiokande and IceCube use the same “beam,” which is atmospheric neutrinos, but at different energies. And we reach a similar precision for the determination of the measurable oscillation parameters,” says Juan Pablo Yanez, a postdoctoral researcher at DESY and corresponding author of this paper. “But as IceCube keeps taking data and we keep improving our analyses, we might see important improvements in our collaboration results soon,” adds Yanez.

    IceCube records over one hundred thousand atmospheric neutrinos every year, most of them muon neutrinos produced by the interaction of cosmic rays with the atmosphere. DeepCore, a subdetector of the Antarctic neutrino observatory, allows the detection of neutrinos with energies down to 10 GeV.

    According to our understanding of neutrino oscillations, in which neutrinos can change their type on their trip through matter and space, IceCube should see fewer muon neutrinos at energies around 25 GeV and that reach IceCube after crossing the entire Earth. The reason for these missing muon neutrinos is that many oscillate into other flavors that are not seen by the detector or not selected in this analysis.

    IceCube researchers selected muon neutrino candidates with energies between a few GeV and around 50 GeV and coming from the Northern Hemisphere from data taken between May 2011 and April 2014. About 5,200 events were found, much below the 7,000 expected in the non-oscillations scenario.

    The parameters that best describe the IceCube data, and (normal mass hierarchy assumed), show uncertainties still larger than but already comparable to the neutrino-accelerator experiments. Stay tuned for further news about neutrino oscillations in IceCube!

    + Info “Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data,” IceCube Collaboration: M.G. Aartsen et al. Submitted to Physical Review Letters, arXiv.org:1410.7227

    See the full article here.

    ICECUBE neutrino detector
    IceCube is a particle detector at the South Pole that records the interactions of a nearly massless sub-atomic particle called the neutrino. IceCube searches for neutrinos from the most violent astrophysical sources: events like exploding stars, gamma ray bursts, and cataclysmic phenomena involving black holes and neutron stars. The IceCube telescope is a powerful tool to search for dark matter, and could reveal the new physical processes associated with the enigmatic origin of the highest energy particles in nature. In addition, exploring the background of neutrinos produced in the atmosphere, IceCube studies the neutrinos themselves; their energies far exceed those produced by accelerator beams. IceCube is the world’s largest neutrino detector, encompassing a cubic kilometer of ice.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 4:52 pm on October 23, 2014 Permalink | Reply
    Tags: , , Neutrinos   

    From FNAL: “UV laser calibration system installed in MicroBooNE” 


    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    Thursday, Oct. 23, 2014
    Rich Blaustein

    Fermilab’s MicroBooNE experiment, expected to launch in early 2015, could very well help determine whether a hypothesized fourth neutrino — referred to as a sterile neutrino — would join the three confirmed ones. Anticipating significant, perhaps momentous, findings, Fermilab and outside collaborators are working hard to ready MicroBooNE for take-off.

    In late September, MicroBooNE collaborators installed a new ultraviolet (UV) laser calibration system in MicroBooNE’s liquid-argon detector at Fermilab. Scientists at Switzerland’s University of Bern Laboratory for High Energy Physics, a MicroBooNE collaborator, designed and built the system specifically for the project.

    two
    Antonio Ereditato (left), head of the Laboratory for High Energy Physics at the University of Bern, and scientist Thomas Strauss, also of the University of Bern, work on MicroBooNE’s UV laser calibration system. Photo: Reidar Hahn

    “This is exciting,” said Fermilab’s Sam Zeller, MicroBooNE co-spokesperson. “This is the first time anyone has deployed such a laser system in a liquid-argon detector for a major neutrino experiment.”

    Fermilab’s MiniBooNE experiment (MicroBooNE’s predecessor) and Los Alamos National Laboratory’s Liquid Scintillator Neutrino Detector experiment raised the possibility of a fourth neutrino. However, the two experiments, while producing many cited — and some differing — results, did not have sensitive liquid-argon detectors for charting neutrino activity.

    “We are recreating that same short-beamline environment, but with MicroBooNE, which has a more capable detector,” said University of Bern’s Michele Weber, MicroBooNE physics analysis coordinator. “We now have some means to address this new neutrino question.”

    Because of the high-resolution imaging capability of liquid-argon detectors such as MicroBooNE’s, it is important to ensure and monitor their correct functioning. One of the calibration system’s goals is to check the detector’s electric field and how it transfers deposits of charge, caused by neutrino interactions with the liquid argon, to the detector’s readout wires.

    With the University of Bern’s UV laser calibration system, ultraviolet laser beams, which are reliably straight, are shot through the argon-filled chamber when the neutrino beam is not activated to test whether the detector’s critical components — wiring, electrical field — are operating maximally or are skewing data readings.

    Physicist Antonio Ereditato, who heads the University of Bern laboratory, explains that a normal visible-light laser does not have enough energy to ionize the liquid argon and create tracks similar to those caused by the neutrinos. But a laser using ultraviolet light, which is higher in energy than visible light, can do the job under specific conditions.

    “The system creates ‘artificial’ tracks that mimic the ionization tracks left by particles. In short, this ultraviolet laser system checks, monitors and calibrates the liquid-argon detector,” Ereditato said.

    “That allows us to measure possible image distortions everywhere,” Weber said. Those distortions can then be accounted for in the data.

    The laser calibration system took eight years of R&D studies to develop. The Bern team also tested it on a liquid-argon detector prototype at their lab.

    “I always joke with the Bern team that the calibration system they built is like a Swiss watch,” Zeller said. “The laser itself, like exquisite clockwork, sweeps across the detector. It is absolutely beautiful.”

    Ereditato and Weber are also very happy with the system. They feel the MicroBooNE experiment embodies the international cooperation and goodwill that bodes well for the future of particle physics.

    “This experiment, which we worked so hard on, and Fermilab’s opening their doors and recognizing our work is very satisfying,” Weber said.

    “If there is another neutrino, it could open up an entirely new particle family — so there is some exciting physics possibly around the corner,” Zeller said. “We are ready to get going.”

    See the full article here.

    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 1:08 pm on October 22, 2014 Permalink | Reply
    Tags: , , , , Neutrinos, ,   

    From FNAL: “From the Office of Campus Strategy and Readiness – Building the future of Fermilab” 


    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    Wednesday, Oct. 22, 2014
    ro
    Randy Ortgiesen, head of OCSR, wrote this column.

    As Fermilab and the Department of Energy continue to aggressively “make ready the laboratory” for implementing P5′s recommendations, I can’t help reflecting on all that has recently been accomplished to support the lab’s future — both less visible projects and the big stuff. As we continue to build on these accomplishments, it’s worth noting their breadth and how much headway we’ve made.

    The development of the Muon Campus is proceeding at a healthy clip. Notable in its progress is the completion of the MC-1 Building and the cryogenic systems that support the Muon g-2 experiment. The soon-to-launch beamline enclosure construction project and soon-to-follow Mu2e building is also significant. And none of this could operate without the ongoing, complex accelerator work that will provide beam to these experiments.

    Repurposing of the former CDF building for future heavy-assembly production space and offices is well under way, with more visible exterior improvements to begin soon.

    The new remote operations center, ROC West, is open for business. Several experiments already operate from its new location adjacent to the Wilson Hall atrium.

    The Wilson Street entrance security improvements, including a new guardhouse, are also welcome additions to improved site aesthetics and security operations. Plans for a more modern and improved Pine Street entrance are beginning as well.

    The fully funded Science Laboratory Infrastructure project to replace the Master Substation and critical portions of the industrial cooling water system will mitigate the lab’s largest infrastructure vulnerability for current and future lab operations. Construction is scheduled to start in summer 2015.

    The short-baseline neutrino program is expected to start utility and site preparation very soon, with the start of the detector building construction following shortly thereafter. This is an important and significant part of the near-term future of the lab.

    The start of a demolition program for excess older and inefficient facilities is very close. The program will begin with a portion of the trailers at both the CDF and DZero trailer complexes.

    Space reconfiguration in Wilson Hall to house the new Neutrino Division and LBNF project offices is in the final planning stage and will also be starting soon.

    The atrium improvements, with the reception desk, new lighting and more modern furniture create a more welcoming atmosphere.

    And I started the article by mentioning planning for the “big stuff.” The big stuff, as you may know, includes the lab’s highest-priority project in developing a new central campus. This project is called the Center for Integrated Engineering Research, to be located just west of Wilson Hall. It will consolidate engineering resources from across the site to most efficiently plan for, construct and operate the P5 science projects. The highest-priority Technical Campus project, called the Industrial Center Building Addition, is urgently needed to expand production capacity for the equipment required for future science projects. And lastly the Scientific Hostel, or guest house, for which plans are also under way, will complete the Central Campus theme to “eat-sleep-work to drive discovery.”

    See the full article here.

    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 354 other followers

%d bloggers like this: