Tagged: NASA Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:42 pm on April 16, 2014 Permalink | Reply
    Tags: , , , , , NASA,   

    From M.I.T.: “A river of plasma, guarding against the sun” 

    March 6, 2014
    Jennifer Chu, MIT News Office

    MIT scientists identify a plasma plume that naturally protects the Earth against solar storms.

    The Earth’s magnetic field, or magnetosphere, stretches from the planet’s core out into space, where it meets the solar wind, a stream of charged particles emitted by the sun. For the most part, the magnetosphere acts as a shield to protect the Earth from this high-energy solar activity.

    But when this field comes into contact with the sun’s magnetic field — a process called “magnetic reconnection” — powerful electrical currents from the sun can stream into Earth’s atmosphere, whipping up geomagnetic storms and space weather phenomena that can affect high-altitude aircraft, as well as astronauts on the International Space Station.

    magrec
    Magnetic Reconnection: This view is a cross-section through four magnetic domains undergoing separator reconnection. Two separatrices divide space into four magnetic domains with a separator at the center of the figure. Field lines (and associated plasma) flow inward from above and below the separator, reconnect, and spring outward horizontally. A current sheet (as shown) may be present but is not required for reconnection to occur. This process is not well understood: once started, it proceeds many orders of magnitude faster than predicted by standard models.

    Now scientists at MIT and NASA have identified a process in the Earth’s magnetosphere that reinforces its shielding effect, keeping incoming solar energy at bay.

    sun

    By combining observations from the ground and in space, the team observed a plume of low-energy plasma particles that essentially hitches a ride along magnetic field lines — streaming from Earth’s lower atmosphere up to the point, tens of thousands of kilometers above the surface, where the planet’s magnetic field connects with that of the sun. In this region, which the scientists call the merging point, the presence of cold, dense plasma slows magnetic reconnection, blunting the sun’s effects on Earth.

    “The Earth’s magnetic field protects life on the surface from the full impact of these solar outbursts,” says John Foster, associate director of MIT’s Haystack Observatory. “Reconnection strips away some of our magnetic shield and lets energy leak in, giving us large, violent storms. These plasmas get pulled into space and slow down the reconnection process, so the impact of the sun on the Earth is less violent.”

    Foster and his colleagues publish their results in this week’s issue of Science. The team includes Philip Erickson, principal research scientist at Haystack Observatory, as well as Brian Walsh and David Sibeck at NASA’s Goddard Space Flight Center.

    Mapping Earth’s magnetic shield

    For more than a decade, scientists at Haystack Observatory have studied plasma plume phenomena using a ground-based technique called GPS-TEC, in which scientists analyze radio signals transmitted from GPS satellites to more than 1,000 receivers on the ground. Large space-weather events, such as geomagnetic storms, can alter the incoming radio waves — a distortion that scientists can use to determine the concentration of plasma particles in the upper atmosphere. Using this data, they can produce two-dimensional global maps of atmospheric phenomena, such as plasma plumes.

    These ground-based observations have helped shed light on key characteristics of these plumes, such as how often they occur, and what makes some plumes stronger than others. But as Foster notes, this two-dimensional mapping technique gives an estimate only of what space weather might look like in the low-altitude regions of the magnetosphere. To get a more precise, three-dimensional picture of the entire magnetosphere would require observations directly from space.

    Toward this end, Foster approached Walsh with data showing a plasma plume emanating from the Earth’s surface, and extending up into the lower layers of the magnetosphere, during a moderate solar storm in January 2013. Walsh checked the date against the orbital trajectories of three spacecraft that have been circling the Earth to study auroras in the atmosphere.

    As it turns out, all three spacecraft crossed the point in the magnetosphere at which Foster had detected a plasma plume from the ground. The team analyzed data from each spacecraft, and found that the same cold, dense plasma plume stretched all the way up to where the solar storm made contact with Earth’s magnetic field.

    A river of plasma

    Foster says the observations from space validate measurements from the ground. What’s more, the combination of space- and ground-based data give a highly detailed picture of a natural defensive mechanism in the Earth’s magnetosphere.

    “This higher-density, cold plasma changes about every plasma physics process it comes in contact with,” Foster says. “It slows down reconnection, and it can contribute to the generation of waves that, in turn, accelerate particles in other parts of the magnetosphere. So it’s a recirculation process, and really fascinating.”

    Foster likens this plume phenomenon to a “river of particles,” and says it is not unlike the Gulf Stream, a powerful ocean current that influences the temperature and other properties of surrounding waters. On an atmospheric scale, he says, plasma particles can behave in a similar way, redistributing throughout the atmosphere to form plumes that “flow through a huge circulation system, with a lot of different consequences.”

    “What these types of studies are showing is just how dynamic this entire system is,” Foster adds.

    Tony Mannucci, supervisor of the Ionospheric and Atmospheric Remote Sensing Group at NASA’s Jet Propulsion Laboratory, says that although others have observed magnetic reconnection, they have not looked at data closer to Earth to understand this connection.

    “I believe this group was very creative and ingenious to use these methods to infer how plasma plumes affect magnetic reconnection,” says Mannucci, who was not involved in the research. “This discovery of the direct connection between a plasma plume and the magnetic shield surrounding Earth means that a new set of ground-based observations can be used to infer what is occurring deep in space, allowing us to understand and possibly forecast the implications of solar storms.”

    See the full article here.


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 6:44 pm on February 21, 2013 Permalink | Reply
    Tags: , , , , , , NASA, ,   

    From NASA Chandra: “Chemistry and the Universe” 

    NASA Chandra

    Chemistry, the study of the intricate dances and bondings of low-energy electrons to form the molecules that make up the world we live in, may seem far removed from the thermonuclear heat in the interiors of stars and the awesome power of supernovas. Yet, there is a fundamental connection between them.

    To illustrate this connection, the familiar periodic table of elements—found in virtually every chemistry class—has been adapted to show how astronomers see the chemical Universe. What leaps out of this table is that the simplest elements, hydrogen and helium, are far and away the most abundant.

    pt
    Periodic Table alteration

    PeriodicTable2
    The Periodic Table

    The Universe started out with baryonic matter in its simplest form, hydrogen. In just the first 20 minutes or so after the Big Bang, about 25% of the hydrogen was converted to helium. In essence, the chemical history of the Universe can be divided into two mainphases: one lasting 20 minutes, and the rest lasting for 13.7 billion years and counting.

    One of the principal scientific accomplishments of the Chandra X-ray Observatory has been to help unravel how the chemical enrichment by stellar winds and supernovas works on a galactic and intergalactic scale.

    super
    Cassiopeia A (Cas A, for short), the youngest supernova remnant in the Milky Way.Credit: NASA/CXC/MIT/UMass Amherst/M.D.Stage et al.

    Chandra images and spectra of individual supernova remnants reveal clouds of gas rich in elements such as oxygen, silicon, sulfur, calcium and iron, and track the speed at which these elements have been ejected in the explosion. The Chandra image of the Cas A supernova remnant shows iron rich ejecta outside silicon-rich ejecta, thus indicating that turbulent mixing and an aspherical explosion turned much of the original star inside out. Observations of Doppler-shifted emission lines for Cas A and other supernova remnants are providing three-dimensional information on the distribution and velocity of the supernova ejecta which will help to constrain models for the explosion.

    dstar mass

    See the full article here.

    Chandra X-ray Center, Operated for NASA by the Smithsonian Astrophysical Observatory
    Smithsonian Astrophysical Observatory


    ScienceSprings is powered by MAINGEAR computers

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 345 other followers

%d bloggers like this: