Tagged: NASA Webb Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:38 pm on July 30, 2014 Permalink | Reply
    Tags: , , , , NASA Webb, , Spectroscopy   

    From NASA/Webb: “Revolutionary Microshutter Technology Hurdles Significant Challenges” 

    NASA James Webb Header

    NASA James Webb Telescope

    James Webb Space Telescope
    July 29, 2014
    Lori Keesey
    NASA Goddard Space Flight Center, Greenbelt, Maryland

    NASA technologists have hurdled a number of significant technological challenges in their quest to improve an already revolutionary observing technology originally created for the James Webb Space Telescope.

    The team, led by Principal Investigator Harvey Moseley, a scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, has demonstrated that electrostatically actuated microshutter arrays — that is, those activated by applying an specific voltage — are as functional as the current technology’s magnetically activated arrays. This advance makes them a highly attractive capability for potential Explorer-class missions designed to perform multi-object observations.

    “We have identified real applications — three scientists want to use our microshutter arrays and the commercial sector has expressed interest,” said Mary Li, a Goddard engineer who is working with Moseley and other team members to fully develop this already groundbreaking observing technology. “The electrostatic concept has been fully demonstrated and our focus now is on making these devices highly reliable.”

    Progress, she said, is in large part due to the fact that the team successfully eliminated all macro-moving parts — in particular, a large magnet — and dramatically lowered the voltage needed to actuate the microshutter array. In addition, the team applied advanced electronic circuitry and manufacturing techniques to assure the microshutter arrays’ dependable operation in orbit, Li added.

    The Microshutter Breakthrough

    Considered among the most innovative technologies to fly on the Webb telescope, the microshutter assembly is created from micro-electro-mechanical technologies and comprises thousands of tiny shutters, each about the width of a human hair.

    Assembled on four postage-size grids or arrays, the 250,000 shutters open or close individually to allow only the light from targeted objects to enter Webb’s Near Infrared Spectrograph (NIRSpec), which will help identify types of stars and gases and measure their distances and motions. Because Webb will observe faint, far-away objects, it will take as long as a week for NIRSpec to gather enough light to obtain good spectra.

    NASA Webb NIRspec
    NASA/Webb NIRSpec

    NIRSpec’s microshutter array, however, enhances the instrument’s observing efficiencies. It will allow scientists to gather spectral data on 100 objects at a time, vastly increasing the observatory’s productivity. When NASA launches the Webb telescope in 2018, it will represent a first for multi-object spectroscopy.

    close
    This image shows a close-up view of the next-generation microshutter arrays during the fabrication process. The technology advances an already groundbreaking multi-object observing technique.
    Image Credit: NASA/Bill Hrybyk

    Quest to Improve Design

    Determined to make the microshutter technology more broadly available, Goddard technologists have spent the past four years experimenting with techniques to advance this capability.

    One of the first things the team did was eliminate the magnet that sweeps over the shutter arrays to activate them. As with all mechanical parts, the magnet takes up space, adds weight, and is prone to mechanical failure. Perhaps more important, the magnet cannot be easily scaled up in size without creating significant fabrication challenges. As a result, the instrument’s field of view — that is, the area that is observable through an instrument — is limited in size. This greatly impedes next-generation space observatories that will require larger fields of view.

    Magnetic activation also takes longer. With the Webb telescope, the magnet must first sweep over the array to open all the shutters before voltages are selectively applied to open or close specific shutters.

    Achieving the Voltage Sweet Spot and Other Milestones

    To accommodate the needs of future observatories, the team replaced the magnet with electrostatic actuation. By applying an alternating-current voltage to electrodes placed on the frontside of the microshutters, the shutters swing open. To latch the desired shutters, a direct current voltage is applied to electrodes on the backside. In other words, only the needed shutters are opened; the rest remain closed. “This reduction in cycles should allow us to extend the lifetime of the microshutter arrays 100 times or more,” Li explained.

    And because the magnet no longer dictates the size of the array, its elimination will allow scientists to assemble much larger arrays for instruments whose fields of view are 50 times larger than Webb’s NIRSpec, she said.

    Just as significant is the voltage needed to actuate the arrays. When the effort first began four years ago, the team only could open and close the shutters with 1,000 volts. By 2011, the team had slashed that number to 80 volts — a level that still could exceed instrument voltage specifications. By last year, the team had achieved a major milestone by activating the shutters with just 30 volts — a voltage sweet spot, Li said.

    “But we also did something else,” she added.

    Through experimentation, the team used atomic layer deposition, a state-of-the-art fabrication technology, to fully insulate the tiny space between the electrodes to eliminate potential electrical crosstalk that could interfere with the arrays’ operation.

    The team also applied a very thin anti-stiction coating to prevent the shutters from sticking when opened. Before applying the coating, a 3,000-cycle laboratory test indicated that a third of the shutters stuck. After coating them, the team ran a 27,000-cycle test and not a single shutter adhered to the sides, Li said.

    Success Breeds Success; More Work Ahead

    men
    Goddard engineers Devin Burns and Lance Oh are pictured here with the next-generation microshutter arrays.
    Image Credit:
    NASA/Bill Hrybyk

    oh
    Goddard engineer Lance Oh is one of several technologists developing a next-generation microshutter array technology originally developed for the James Webb Space Telescope.
    Image Credit: NASA/Bill Hrybyk

    As a result of the progress, Li said three astrophysicists now are interested in applying the technology to their own mission concepts, which include observing nearby star-forming regions in the ultraviolet, studying the origins of astronomical objects to better understand the cosmic order, and understanding how galaxies, stars, and black holes evolve. In fact, one of those scientists is so committed to advancing the microshutter array that he plans to demonstrate it during a sounding-rocket mission next year, Li said.

    Although spectroscopy — the study of the absorption and emission of light by matter — is the obvious beneficiary of the technology’s advance, Li said it also is applicable to lidar instruments that measure distance by illuminating a target with a laser and analyzing the reflected light. A major automotive company also has expressed interested in the technology, she added.

    However, before others can use the new and improved microshutter technology, Li said the team must develop an assembly and packaging to house multiple arrays. “If you want to use the microshutter array on a large telescope, we need to make a larger field of view. To make this happen, we need to take multiple arrays and stitch them together,” Li said.

    Currently, the technology relies on a large computerized switch box — a heavy device unsuitable for spaceflight missions. The team plans to incorporate an integrated circuit, or silicon chip, that drives the switching functions. Placed next to the shutters, the circuit would take up only a fraction of the space. The team currently is identifying circuits from different vendors and plans to begin testing shortly.

    “In just four years, we have made great progress. A major private company has expressed interest in our technology, to say nothing of the three potential astrophysics missions,” Li said. “Given our progress, I am confident that we can make this technology more readily accessible to the optics community.”

    See the full article here.

    The James Webb Space Telescope will be a large infrared telescope with a 6.5-meter primary mirror. Launch is planned for later in the decade.

    Webb telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    Webb telescope was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

    Webb is an international collaboration between NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center is managing the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute will operate Webb after launch.

    Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

    There will be four science instruments on Webb: the Near InfraRed Camera (NIRCam), the Near InfraRed Spectrograph (NIRSpec), the Mid-InfraRed Instrument (MIRI), and the Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS). Webb’s instruments will be designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.

    Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

    Launch is scheduled for later in the decade on an Ariane 5 rocket. The launch will be from Arianespace’s ELA-3 launch complex at European Spaceport located near Kourou, French Guiana. Webb will be located at the second Lagrange point, about a million miles from the Earth.

    NASA

    ESA Icon Large

    Canadian Space Agency


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 8:12 pm on April 18, 2014 Permalink | Reply
    Tags: , , , , , NASA Webb   

    From NASA/Blueshift: “[Maggie’s Blog] A Secondary Space Mirror” 

    NASA Blueshift

    April 18, 2014
    Maggie Masetti

    One of the cool things about the James Webb Space Telescope’s design is the giant boom that sticks out in front of the telescope. This structure is what holds the telescope’s secondary mirror. It’s the “small” round gold thing, visible in this artist’s conception.

    boom
    Credit: NASA

    Here’s what it looks like for real. This is the flight mirror, the one that is going into space! It’s coated in gold like JWST’s other mirrors to optimize it for reflecting infrared light.

    men
    Credit: NASA/Chris Gunn

    It’s actually pretty big – in fact it’s not much smaller than the Spitzer Space Telescope’s primary mirror! (Spitzer’s primary mirror is 0.85 meters in diameter, JWST’s secondary mirror is 0.74 meters.) It just looks small next to JWST’s 21 foot diameter primary mirror!

    stacks
    Credit: NASA

    Northrop Grumman has the pathfinder, or test version of this boom structure that will hold the secondary mirror.

    ng
    Credit: Paul Geithner

    I found out a little more about it from Deputy Project Manager for JWST, Paul Geithner, and Optical Telescope Element Manager, Lee Feinberg. Here’s their caption for the above photo.

    This is the secondary mirror structure (SMSS) for the Pathfinder telescope structure. The flight one will be virtually identical. This image is from a ‘walkout’ of the structure from its stowed to its deployed condition. The scale is evident in the photo, comparing the people and the structure. This walkout involved careful offloading of weight in the 1g environment on Earth; this deployment will take place in space where there is the inertia of the mass but not the weight, and ground deployments require offloading. The flight SMSS is in strength testing, and it will be integrated with the backplane before it is sent to NASA Goddard for telescope assembly.

    Before this, the Pathfinder telescope backplane and SMSS will come to Goddard for ‘pathfinding’ operations as practice for the integration we will do on the flight in 2015. Once at Goddard, two spare primary mirror segments and a spare secondary will be installed to make up the Pathfinder telescope.

    This is the first time a deployable secondary mirror structure for a space telescope has ever been tested. The SMSS is over 8 meters (26.2 feet) tall.

    Here is the Northrop Grumman Integration and Test team after successfully transferring the pathfinder SMSS from the floor assembly jig (that tall, black, latticed structure you see in the other photo) to the backplane pathfinder.

    team
    Credit: Northrop Grumman

    We’ll be sure to give a report when this huge structure shows up at NASA Goddard – we’ll be excited to see it for ourselves!

    See the full article here.

    Blueshift is produced by a team of contributors in the Astrophysics Science Division at Goddard. Started in 2007, Blueshift came from our desire to make the fascinating stuff going on here every day accessible to the outside world.

    NASANASA Goddard Banner


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 11:54 am on March 9, 2014 Permalink | Reply
    Tags: , , , , NASA Webb   

    From NASA/Webb: “About Webb’s Orbit” 

    NASA James Webb Header

    NASA James Webb Telescope

    James Webb Space Telescope

    The James Webb Space Telescope will observe primarily the infrared light from faint and very distant objects. But all objects, including telescopes, also emit infrared light. To avoid swamping the very faint astronomical signals with radiation from the telescope, the telescope and its instruments must be very cold. Therefore, Webb has a large shield that blocks the light from the Sun, Earth, and Moon, which otherwise would heat up the telescope, and interfere with the observations. To have this work, Webb must be in an orbit where all three of these objects are in about the same direction. The answer is to put Webb in an orbit around the L2 point.

    The L2 orbit is an elliptical orbit about the semi-stable second Lagrange point . It is one of the five solutions by the mathematician Joseph-Louis Lagrange in the 18th century to the three-body problem. Lagrange was searching for a stable configuration in which three bodies could orbit each other yet stay in the same position relative to each other. He found five such solutions, and they are called the five Lagrange points in honor of their discoverer.

    lp
    A contour plot of the effective potential due to gravity and the centrifugal force of a two-body system in a rotating frame of reference. The arrows indicate the gradients of the potential around the five Lagrange points—downhill toward them (red) or away from them (blue). Counterintuitively, the L4 and L5 points are the high points of the potential. At the points themselves these forces are balanced.

    lp2
    Visualisation of the relationship between the Lagrangian points (red) of a planet (blue) orbiting a star (yellow) anticlockwise, and the effective potential in the plane containing the orbit (grey rubber-sheet model with purple contours of equal potential).

    In three of the solutions found by Lagrange, the bodies are in line (L1, L2, and L3); in the other two, the bodies are at the points of equilateral triangles (L4 and L5). The five Lagrangian points for the Sun-Earth system are shown in the diagram below. An object placed at any one of these 5 points will stay in place relative to the other two.

    In the case of Webb, the 3 bodies involved are the Sun, the Earth and the Webb. Normally, an object circling the Sun further out than the Earth would take more than one year to complete its orbit. However, the balance of gravitational pull at the L2 point means that Webb will keep up with the Earth as it goes around the Sun. The gravitational forces of the Sun and the Earth can nearly hold a spacecraft at this point, so that it takes relatively little rocket thrust to keep the spacecraft in orbit around L2.

    lp3
    Other infrared missions have selected an L2 orbit, like WMAP and H2L2. For a more detailed explanation of the Lagrangian points, please see the WMAP discussion of this orbit.

    Here are a few graphics that illustrate how far away Webb will be. It will take Webb rough 30 days to reach the start of its orbit of L2.
    ref

    lp4
    (Note that these graphics are not to scale.)

    Astronomy Cast has a podcast on Lagrange points that you may find interesting.

    See the full article here.

    The James Webb Space Telescope will be a large infrared telescope with a 6.5-meter primary mirror. Launch is planned for later in the decade.

    Webb telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    Webb telescope was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

    Webb is an international collaboration between NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center is managing the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute will operate Webb after launch.

    Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

    There will be four science instruments on Webb: the Near InfraRed Camera (NIRCam), the Near InfraRed Spectrograph (NIRSpec), the Mid-InfraRed Instrument (MIRI), and the Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS). Webb’s instruments will be designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.

    Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

    Launch is scheduled for later in the decade on an Ariane 5 rocket. The launch will be from Arianespace’s ELA-3 launch complex at European Spaceport located near Kourou, French Guiana. Webb will be located at the second Lagrange point, about a million miles from the Earth.

    NASA

    ESA Icon Large

    Canadian Space Agency


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 10:34 pm on March 8, 2014 Permalink | Reply
    Tags: , , , , NASA Webb   

    From NASA/Webb: “JWST Deployment Sequence” Video 

    NASA James Webb Header

    NASA James Webb Telescope

    James Webb Space Telescope

    NASA/Webb has just put out this short video about Webb’s deployment.

    Really cool. I hope that you enjoy it.

    The James Webb Space Telescope will be a large infrared telescope with a 6.5-meter primary mirror. Launch is planned for later in the decade.

    Webb telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    Webb telescope was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

    Webb is an international collaboration between NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center is managing the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute will operate Webb after launch.

    Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

    There will be four science instruments on Webb: the Near InfraRed Camera (NIRCam), the Near InfraRed Spectrograph (NIRSpec), the Mid-InfraRed Instrument (MIRI), and the Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS). Webb’s instruments will be designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.

    Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

    Launch is scheduled for later in the decade on an Ariane 5 rocket. The launch will be from Arianespace’s ELA-3 launch complex at European Spaceport located near Kourou, French Guiana. Webb will be located at the second Lagrange point, about a million miles from the Earth.

    ESA Icon Large

    Canadian Space Agency


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 3:01 pm on February 19, 2014 Permalink | Reply
    Tags: , , , , , , NASA Webb   

    From ESA: ” MIRI keeps cool under low pressure” 

    ESASpaceForEuropeBanner
    European Space Agency

    19-Feb-2014
    No Writer Credit

    The Mid-Infrared Instrument (MIRI) on JWST has performed beautifully during its first cryo-vacuum test campaign carried out at NASA’s Goddard Space Flight Center towards the end of last year. An examination of data recorded during those tests confirms that the instrument is in good health and performing well.

    In August last year preparations began for the first ISIM (Integrated Science Instrument Module) test campaign to be performed in a vacuum and at cryogenic temperatures. Fitted with two instruments – MIRI and FGS/NIRISS (the Fine Guidance Sensor / Near-InfraRed Imager and Slitless Spectrograph) – ISIM was installed in the Space Environment Simulator (SES), a large cryogenic test chamber at Goddard. The doors to the chamber were closed on 29 August and after about 5 days the vacuum (approximately 10-6 mbar) was achieved, ISIM and the instruments were checked to be functioning and in good shape, and the cool-down then began.

    NASA Webb MIRI
    MIRI

    NASA Webb Fine Guidance
    FGS/NIRISS

    isim
    ISIM with MIRI and FGS/NIRISS, mounted on a test rig Credit: NASA / Chris Gunn

    ses
    ISIM inside the SES chamber at Goddard. Credit: NASA / Chris Gunn

    cryo
    The cryocooler under development for MIRI.
    Credit: Northrop Grumman

    Nearly twenty days later, the ISIM reached a temperature of -233 °C (40.15 K) – the same temperature it will experience in space. However, this temperature is not low enough for the advanced detectors on MIRI. To ensure that the detectors are not blinded by temperature-driven parasitic light and currents, astronomers require the instrument to be cooled down to around -266 °C. This is barely seven degrees above absolute zero – the latter being the lowest temperature possible, as defined by the laws of physics. To achieve this level of cooling, a dedicated cooling system, called the MIRI cryocooler is being developed by NASA JPL.

    During the almost three-week cool down of MIRI, team members on-site at Goddard, across Europe and elsewhere in the US monitored the health of the instrument, 24 hours a day, seven days a week.

    Once the Optical Telescope Simulator (OSIM), ISIM, MIRI and FGS/NIRISS all reached their operating temperatures, the scientists and engineers resumed their tests, constantly monitoring the state of the instruments, as well as conducting their experiments and analysing the data.
    Left: Thermal and vacuum test rig for ISIM. Credit: NASA / Chris Gunn.

    osim
    Erin Wilson is seen here preparing the JWST OSIM for environmental testing. Image credits: NASA / Chris Gunn

    Every indication showed that MIRI performed well, however, not even scientific experiments deep in the Goddard cryogenic test chamber are immune from external perturbations and on 1 October all testing was put on hold as the American government shut down.

    Once the furlough ended, testing started again on 17 October. To reduce the impact of the unscheduled ‘break’, the sequence of tests was revised and heavily streamlined. The most critical activities were given the highest priorities and tested accordingly.

    Despite this interruption, and due to the great efforts from all of the teams, the tests at operating temperature were successfully completed on 29 October and all of the primary goals of the first ISIM test campaign were reached. Warm-up then started and was finished in the week of 11 November, after which this first ISIM cryo-vacuum test campaign was officially declared complete.

    This was the first time MIRI could be tested at its operating temperature since the instrument-level testing at RAL in Europe in 2011. The data gathered by the MIRI team have shown that the instrument performed beautifully and is in good health.

    About JWST

    The James Webb Space Telescope (JWST) will be a general-purpose observatory with a 6.5-m telescope optimised for infrared observations and a suite of four astronomical instruments capable of addressing many of the outstanding issues in astronomy. The primary aim is to examine the first light in the Universe – those objects which formed shortly after the Big Bang. Further aims include: looking at how galaxies form; the birth of stars; and the search for protoplanetary systems and the origin of life, including the study of exoplanets. JWST is a joint project of NASA, ESA and the Canadian Space Agency. It is scheduled for launch in 2018 by an Ariane 5 and will operate approximately 1.5 million kilometres from the Earth in an orbit around the second Lagrange point of the Sun-Earth system, L2.

    About MIRI

    The Mid-Infrared Instrument (MIRI) is one of four instruments on JWST. MIRI will provide direct imaging, medium- and low-resolution spectroscopy, and coronagraphic imaging. It is expected to make important contributions in all of the primary science aims of JWST. MIRI was developed as a partnership between Europe and the USA – the main partners are a consortium of nationally funded European institutes (the MIRI European Consortium), the Jet Propulsion Laboratory (JPL), ESA, and NASA’s Goddard Space Flight Center (GSFC).

    See the full article here.

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 1:39 pm on January 24, 2014 Permalink | Reply
    Tags: , , , , NASA Webb   

    From NASA/Webb: “James Webb Space Telescope Passes a Mission Milestone” 

    NASA James Webb Header

    NASA James Webb Telescope

    James Webb Space Telescope

    Jan. 24, 2014

    J.D. Harrington
    Headquarters, Washington
    202-358-5241
    j.d.harrington@nasa.gov

    Lynn Chandler
    Goddard Space Flight Center, Greenbelt, Md.
    301-286-2806
    lynn.chandler-1@nasa.gov

    NASA’s James Webb Space Telescope has passed its first significant mission milestone for 2014 — a Spacecraft Critical Design Review (SCDR) that examined the telescope’s power, communications and pointing control systems.

    “This is the last major element-level critical design review of the program,” said Richard Lynch, NASA Spacecraft Bus Manager for the James Webb Space Telescope at NASA’s Goddard Space Flight Center in Greenbelt, Md. “What that means is all of the designs are complete for the Webb and there are no major designs left to do.”

    During the SCDR, the details, designs, construction and testing plans, and the spacecraft’s operating procedures were subjected to rigorous review by an independent panel of experts. The week-long review involved extensive discussions on all aspects of the spacecraft to ensure the plans to finish construction would result in a vehicle that enables the powerful telescope and science instruments to deliver their unique and invaluable views of the universe.

    “While the spacecraft that carries the science payload for Webb may not be as glamorous as the telescope, it’s the heart that enables the whole mission,” said Eric Smith, acting program director and program scientist for the Webb Telescope at NASA Headquarters in Washington. “By providing many services including telescope pointing and communication with Earth, the spacecraft is our high tech infrastructure empowering scientific discovery.”

    Goddard Space Flight Center manages the mission. Northrop Grumman in Redondo Beach, Calif., leads the design and development effort.

    “Our Northrop Grumman team has worked exceptionally hard to meet this critical milestone on an accelerated schedule, following the replan,” said Scott Willoughby, Northrop Grumman vice president and James Webb Space Telescope program manager in Redondo Beach, Calif. “This is a huge step forward in our progress toward completion of the Webb Telescope.”

    The James Webb Space Telescope, successor to NASA’s Hubble Space Telescope, will be the most powerful space telescope ever built. It will observe the most distant objects in the universe, provide images of the first galaxies formed and see unexplored planets around distant stars. The Webb telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

    See the full article here.

    The James Webb Space Telescope will be a large infrared telescope with a 6.5-meter primary mirror. Launch is planned for later in the decade.

    Webb telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    Webb telescope was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

    Webb is an international collaboration between NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center is managing the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute will operate Webb after launch.

    Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

    There will be four science instruments on Webb: the Near InfraRed Camera (NIRCam), the Near InfraRed Spectrograph (NIRSpec), the Mid-InfraRed Instrument (MIRI), and the Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS). Webb’s instruments will be designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.

    package

    Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

    Launch is scheduled for later in the decade on an Ariane 5 rocket. The launch will be from Arianespace’s ELA-3 launch complex at European Spaceport located near Kourou, French Guiana. Webb will be located at the second Lagrange point, about a million miles from the Earth.

    ESA Icon Large

    Canadian Space Agency


    ScienceSprings is powered by MAINGEAR computers


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 7:46 am on July 7, 2013 Permalink | Reply
    Tags: , , , , , , NASA Webb,   

    The Future For Space Exploration: The James Webb Space Telescope 

    This is Webb.

    The James Webb Space Telescope (JWST), previously known as Next Generation Space Telescope (NGST), is a planned space telescope optimized for observations in the infrared, and a scientific successor to the Hubble Space Telescope and the Spitzer Space Telescope. The main technical features are a large and very cold 6.5-meter (21 ft) diameter mirror, an observing position far from Earth, orbiting the Earth–Sun L2 point, and four specialized instruments. The combination of these features will give JWST unprecedented resolution and sensitivity from long-wavelength visible to the mid-infrared, enabling its two main scientific goals – studying the birth and evolution of galaxies, and the formation of stars and planets.

    The telescope is planned for launch on an Ariane 5 rocket on a five-year mission (10-year goal) with a planned launch date in 2018.


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 7:52 am on June 16, 2013 Permalink | Reply
    Tags: , , , , , NASA Webb,   

    From NASA Webb: “NASA’s Webb Telescope’s Last Backbone Component Completed” 

    06.14.13

    No Writer Credit

    “Assembly of the backbone of NASA’s James Webb Space Telescope, the primary mirror backplane support structure, is a step closer to completion with the recent addition of the backplane support frame, a fixture that will be used to connect all the pieces of the telescope together.

    frame
    Technicians complete the center section of the backplane and backplane support frame for NASA’s James Webb Space Telescope at ATK’s facility in Magna, Utah. Photo Credit: ATK

    The backplane support frame will bring together Webb’s center section and wings, secondary mirror support structure, aft optics system and integrated science instrument module. ATK of Magna, Utah, finished fabrication under the direction of the observatory’s builder, Northrop Grumman Corp.

    The backplane support frame also will keep the light path aligned inside the telescope during science observations. Measuring 11.5 feet by 9.1 feet by 23.6 feet and weighing 1,102 pounds, it is the final segment needed to complete the primary mirror backplane support structure. This structure will support the observatory’s weight during its launch from Earth and hold its 18-piece, 21-foot-diameter primary mirror nearly motionless while Webb peers into deep space.”

    See the full article here.

    The James Webb Space Telescope (JWST), previously known as Next Generation Space Telescope (NGST), is a planned space telescope optimized for observations in the infrared, and a scientific successor to the Hubble Space Telescope and the Spitzer Space Telescope. The main technical features are a large and very cold 6.5-meter (21 ft) diameter mirror, an observing position far from Earth, orbiting the Earth–Sun L2 point, and four specialized instruments. The combination of these features will give JWST unprecedented resolution and sensitivity from long-wavelength visible to the mid-infrared, enabling its two main scientific goals – studying the birth and evolution of galaxies, and the formation of stars and planets.

    The telescope is planned for launch on an Ariane 5 rocket on a five-year mission (10-year goal) with a planned launch date in 2018.


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 7:10 pm on April 15, 2013 Permalink | Reply
    Tags: , , , , , NASA Webb,   

    From NASA Webb: “NASA Engineers Rehearse Placement of Webb Telescope’s NIRSpec and Microshutters” 

    04.15.13
    Rob Gutro
    NASA’s Goddard Space Flight Center

    The installation of equipment into the James Webb Space Telescope requires patience and precision. To prepare for the installation of the actual flight equipment and ensure perfection in the installations, scientists need to practice with an identical test unit. Scientists at NASA’s Goddard Space Flight Center in Greenbelt, Md. are currently rehearsing with the placement of the Webb’s Microshutter Array into the NIRSpec.

    test
    Engineers prepare and install the Microshutter Array simulator onto the NIRSpec Engineering Test Unit at NASA Goddard Space Flight Center. Credit: NASA/Chris Gunn

    ETUs or engineering test units are simulations of equipment that will fly on the Webb telescope. Back in 2010, NASA Goddard received the ETU of the Webb telescope’s Near-Infrared Spectrograph (NIRSpec) instrument from its manufacturer in Germany. Currently, engineers and scientists are preparing and installing the Microshutter Array simulator into the engineering test unit of the Webb telescope’s Near-Infrared Spectrograph (NIRSpec) instrument.

    ‘The implementation of a new technology like this depends not only on the conception of it, but it depends on the skilled hands of the engineers and technicians,’ said Harvey Moseley, a senior astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Md. ‘Using the hundred-fold increase in observing speed provided by the microshutters opens the epoch of the universe where the first galaxies are forming and the elements of our current universe.'”

    See the full article here.

    The James Webb Space Telescope (JWST), previously known as Next Generation Space Telescope (NGST), is a planned space telescope optimized for observations in the infrared, and a scientific successor to the Hubble Space Telescope and the Spitzer Space Telescope. The main technical features are a large and very cold 6.5-meter (21 ft) diameter mirror, an observing position far from Earth, orbiting the Earth–Sun L2 point, and four specialized instruments. The combination of these features will give JWST unprecedented resolution and sensitivity from long-wavelength visible to the mid-infrared, enabling its two main scientific goals – studying the birth and evolution of galaxies, and the formation of stars and planets.

    The telescope is planned for launch on an Ariane 5 rocket on a five-year mission (10-year goal) with a planned launch date in 2018.


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 3:50 pm on March 15, 2013 Permalink | Reply
    Tags: , , , , , NASA Webb,   

    From NASA Webb: “NASA’s Webb Telescope Gets Its Wings” 

    03.15.13
    No Writer Credit

    A massive backplane that will hold the primary mirror of NASA’s James Webb Space Telescope nearly motionless while it peers into space is another step closer to completion with the recent assembly of the support structure’s wings.

    backplane
    Technicians complete the primary mirror backplane support structure wing assemblies for NASA’s James Webb Space Telescope at ATK’s Space Components facility in Magna, Utah. ATK recently completed the fabrication of the primary mirror backplane support structure wing assemblies for prime contractor Northrop Grumman on the Webb telescope.
    Credit: Northrop Grumman/ATK

    “This is another milestone that helps move Webb closer to its launch date in 2018,” said Geoff Yoder, NASA’s James Webb Space Telescope program director, NASA Headquarters, Washington.

    Designed, built and set to be tested by ATK at its facilities in Magna, Utah, the wing assemblies are extremely complex, with 900 separate parts made of lightweight graphite composite materials using advanced fabrication techniques. ATK assembled the wing assemblies like a puzzle with absolute precision. ATK and teammate Northrop Grumman of Redondo Beach, Calif., completed the fabrication.

    ‘We will measure the accuracy down to nanometers — it will be an incredible engineering and manufacturing challenge,” said Bob Hellekson, ATK’s Webb Telescope program manager. ‘With all the new technologies that have been developed during this program, the Webb telescope has helped advance a whole new generation of highly skilled ATK engineers, scientists and craftsmen while helping the team create a revolutionary telescope.”

    See the full article here.

    The James Webb Space Telescope (JWST), previously known as Next Generation Space Telescope (NGST), is a planned space telescope optimized for observations in the infrared, and a scientific successor to the Hubble Space Telescope and the Spitzer Space Telescope. The main technical features are a large and very cold 6.5-meter (21 ft) diameter mirror, an observing position far from Earth, orbiting the Earth–Sun L2 point, and four specialized instruments. The combination of these features will give JWST unprecedented resolution and sensitivity from long-wavelength visible to the mid-infrared, enabling its two main scientific goals – studying the birth and evolution of galaxies, and the formation of stars and planets.

    The telescope is planned for launch on an Ariane 5 rocket on a five-year mission (10-year goal) with a planned launch date in 2018.


    ScienceSprings is powered by MAINGEAR computers

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 356 other followers

%d bloggers like this: