Tagged: NASA Voyager 1 Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:19 pm on July 8, 2014 Permalink | Reply
    Tags: , , , , NASA Voyager 1   

    From space.com: “Confirmed: Voyager 1 in Interstellar Space” 

    space-dot-com logo

    July 08, 2014
    Mike Wall, Senior Writer

    New data collected by NASA’s Voyager 1 spacecraft have helped scientists confirm that the far-flung probe is indeed cruising through interstellar space, the researchers say.

    NASA Voyager 1
    NASA Voyager 1

    Voyager 1 made headlines around the world last year when mission scientists announced that the probe had apparently left the heliosphere — the huge bubble of charged particles and magnetic fields surrounding the sun — in August 2012.

    They came to this conclusion after analyzing measurements Voyager 1 made in the wake of a powerful solar eruption known as a coronal mass ejection, or CME. The shock wave from this CME caused the particles around Voyager 1 to vibrate substantially, allowing mission scientists to calculate the density of the probe’s surroundings (because denser plasma oscillates faster.)

    This density was much higher than that observed in the outer layers of the heliosphere, allowing team members to conclude that Voyager 1 had entered a new cosmic realm. (Instellar space is emptier than areas near Earth, but the solar system thins out dramatically near the heliosphere’s edge.)

    The CME in question erupted in March 2012, and its shock wave reached Voyager 1 in April 2013. After these data came in, the team dug up another, much smaller CME-shock event from late 2012 that had initially gone unnoticed. By combining these separate measurements with knowledge of Voyager 1’s cruising speed, the researchers were able to trace the probe’s entry into interstellar space to August 2012.

    And now mission scientists have confirmation, in the form of data from a third CME shock, which Voyager 1 observed in March of this year, NASA officials announced Monday (July 7).

    “We’re excited to analyze these new data,” Don Gurnett of the University of Iowa, the principal investigator of Voyager 1’s plasma wave instrument, said in a statement. “So far, we can say that it confirms we are in interstellar space.”

    Interstellar space begins where the heliosphere ends. But by some measures, Voyager 1 remains inside the solar system, which is surrounded by a shell of comets known as the Oort Cloud.

    Oort cloud
    Oort cloud

    While it’s unclear exactly how far away from Earth the Oort Cloud lies, Voyager 1 won’t get there for quite a while. NASA scientists have estimated that Voyager 1 will emerge from the Oort Cloud in 14,000 to 28,000 years.

    The craft launched in September 1977, about two weeks after its twin, Voyager 2. The probes embarked upon a “grand tour” of the outer solar system, giving the world some its first good looks at Jupiter, Saturn, Uranus, Neptune and the moons of these planets.

    Like Voyager 1, Voyager 2 is still active and operational. It took a different route through the solar system and is expected to follow its twin into interstellar space a few years from now.

    See the full article here.


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 11:37 am on September 13, 2013 Permalink | Reply
    Tags: , , , , NASA Voyager 1   

    From NASA/JPL at Caltech: “NASA Spacecraft Embarks on Historic Journey Into Interstellar Space” 

    September 12, 2013

    Jia-Rui C. Cook/D.C. Agle 818-354-0850/818-393-9011 Jet Propulsion Laboratory, Pasadena, Calif. jccook@jpl.nasa.gov
    Dwayne Brown 202-358-1726 Headquarters, Washington dwayne.c.brown@nasa.gov

    NASA’s Voyager 1 spacecraft officially is the first human-made object to venture into interstellar space. The 36-year-old probe is about 12 billion miles (19 billion kilometers) from our sun.

    v1
    Voyager 1
    The Space Between: This artist’s concept shows the Voyager 1 spacecraft entering the space between stars. Interstellar space is dominated by plasma, ionized gas (illustrated here as brownish haze), that was thrown off by giant stars millions of years ago. Image credit: NASA/JPL-Caltech

    New and unexpected data indicate Voyager 1 has been traveling for about one year through plasma, or ionized gas, present in the space between stars. Voyager is in a transitional region immediately outside the solar bubble, where some effects from our sun are still evident. A report on the analysis of this new data, an effort led by Don Gurnett and the plasma wave science team at the University of Iowa, Iowa City, is published in Thursday’s edition of the journal Science.

    “Now that we have new, key data, we believe this is mankind’s historic leap into interstellar space,” said Ed Stone, Voyager project scientist based at the California Institute of Technology, Pasadena. “The Voyager team needed time to analyze those observations and make sense of them. But we can now answer the question we’ve all been asking — ‘Are we there yet?’ Yes, we are.

    Voyager 1 first detected the increased pressure of interstellar space on the heliosphere, the bubble of charged particles surrounding the sun that reaches far beyond the outer planets, in 2004. Scientists then ramped up their search for evidence of the spacecraft’s interstellar arrival, knowing the data analysis and interpretation could take months or years.

    Voyager 1 does not have a working plasma sensor, so scientists needed a different way to measure the spacecraft’s plasma environment to make a definitive determination of its location. A coronal mass ejection, or a massive burst of solar wind and magnetic fields, that erupted from the sun in March 2012 provided scientists the data they needed. When this unexpected gift from the sun eventually arrived at Voyager 1’s location 13 months later, in April 2013, the plasma around the spacecraft began to vibrate like a violin string. On April 9, Voyager 1’s plasma wave instrument detected the movement. The pitch of the oscillations helped scientists determine the density of the plasma. The particular oscillations meant the spacecraft was bathed in plasma more than 40 times denser than what they had encountered in the outer layer of the heliosphere. Density of this sort is to be expected in interstellar space.

    The plasma wave science team reviewed its data and found an earlier, fainter set of oscillations in October and November 2012. Through extrapolation of measured plasma densities from both events, the team determined Voyager 1 first entered interstellar space in August 2012.

    “We literally jumped out of our seats when we saw these oscillations in our data — they showed us the spacecraft was in an entirely new region, comparable to what was expected in interstellar space, and totally different than in the solar bubble,” Gurnett said. “Clearly we had passed through the heliopause, which is the long-hypothesized boundary between the solar plasma and the interstellar plasma.”

    The new plasma data suggested a timeframe consistent with abrupt, durable changes in the density of energetic particles that were first detected on Aug. 25, 2012. The Voyager team generally accepts this date as the date of interstellar arrival. The charged particle and plasma changes were what would have been expected during a crossing of the heliopause.

    “The team’s hard work to build durable spacecraft and carefully manage the Voyager spacecraft’s limited resources paid off in another first for NASA and humanity,” said Suzanne Dodd, Voyager project manager, based at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “We expect the fields and particles science instruments on Voyager will continue to send back data through at least 2020. We can’t wait to see what the Voyager instruments show us next about deep space.”

    See the full article here.

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl


    ScienceSprings is powered by MAINGEAR computers

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 347 other followers

%d bloggers like this: