Tagged: NASA Spitzer Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:47 am on February 15, 2014 Permalink | Reply
    Tags: , , , , NASA Spitzer   

    From NASA/Spitzer: “NGC 1333 in the Infrared” 2005 



    Spitzer

    Located 1,000 light-years from Earth in the constellation Perseus, a reflection nebula called NGC 1333 epitomizes the beautiful chaos of a dense group of stars being born. Most of the visible light from the young stars in this region is obscured by the dense, dusty cloud in which they formed. With NASA’s Spitzer Space Telescope, scientists can detect the infrared light from these objects. This allows a look through the dust to gain a more detailed understanding of how stars like our sun begin their lives.

    ngc1333

    The young stars in NGC 1333 do not form a single cluster, but are split between two sub-groups. One group is to the north near the nebula shown as red in the image. The other group is south, where the features shown in yellow and green abound in the densest part of the natal gas cloud. With the sharp infrared eyes of Spitzer, scientists can detect and characterize the warm and dusty disks of material that surround forming stars. By looking for differences in the disk properties between the two subgroups, they hope to find hints of the star- and planet-formation history of this region.

    The knotty yellow-green features located in the lower portion of the image are glowing shock fronts where jets of material, spewed from extremely young embryonic stars, are plowing into the cold, dense gas nearby. The sheer number of separate jets that appear in this region is unprecedented. This leads scientists to believe that by stirring up the cold gas, the jets may contribute to the eventual dispersal of the gas cloud, preventing more stars from forming in NGC 1333.

    In contrast, the upper portion of the image is dominated by the infrared light from warm dust, shown as red.

    See the full article here.

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.
    i1 i2


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 5:49 am on January 22, 2014 Permalink | Reply
    Tags: , , , , NASA Spitzer   

    From NASA/Spitzer: “The Seven Sisters Pose for Spitzer” 2007 



    Spitzer

    The Seven Sisters, also known as the Pleiades, seem to float on a bed of feathers in a new infrared image from NASA’s Spitzer Space Telescope. Clouds of dust sweep around the stars, swaddling them in a cushiony veil.

    seven
    Credit NASA/JPL-Caltech/J. Stauffer (SSC/Caltech)
    Date 2007-04-12

    The Pleiades [M45], located more than 400 light-years away in the Taurus constellation, are the subject of many legends and writings. Greek mythology holds that the flock of stars was transformed into celestial doves by Zeus to save them from a pursuant Orion. The 19th-century poet Alfred Lord Tennyson described them as “glittering like a swarm of fireflies tangled in a silver braid.”

    The star cluster was born when dinosaurs still roamed the Earth, about one hundred million years ago. It is significantly younger than our 5-billion-year-old sun. The brightest members of the cluster, also the highest-mass stars, are known in Greek mythology as two parents, Atlas and Pleione, and their seven daughters, Alcyone, Electra, Maia, Merope, Taygeta, Celaeno and Asterope. There are thousands of additional lower-mass members, including many stars like our sun. Some scientists believe that our sun grew up in a crowded region like the Pleiades, before migrating to its present, more isolated home.

    The infrared image from Spitzer highlights the “tangled silver braid” mentioned in the poem by Tennyson. This spider-web like network of filaments, colored yellow, green and red in this view, is made up of dust associated with the cloud through which the cluster is traveling. The densest portion of the cloud appears in yellow and red, and the more diffuse outskirts appear in green hues. One of the parent stars, Atlas, can be seen at the bottom, while six of the sisters are visible at top.

    Thanks to NASA Webb Telescope for letting us know about this image and report from Spitzer.

    See the full article here.

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.
    i1 i2


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 9:16 am on January 12, 2014 Permalink | Reply
    Tags: , , , , NASA Spitzer   

    From NASA/JPL at Caltech: “Stormy Stars? NASA’s Spitzer Probes Weather on Brown Dwarfs” 

    January 07, 2014
    Whitney Clavin 818-354-4673
    Jet Propulsion Laboratory, Pasadena, Calif.
    whitney.clavin@jpl.nasa.gov

    concept
    This artist’s concept shows what the weather might look like on cool star-like bodies known as brown dwarfs. These giant balls of gas start out life like stars, but lack the mass to sustain nuclear fusion at their cores, and instead, fade and cool with time. Image credit: NASA/JPL-Caltech/University of Western Ontario/Stony Brook University

    Swirling, stormy clouds may be ever-present on cool celestial orbs called brown dwarfs. New observations from NASA’s Spitzer Space Telescope suggest that most brown dwarfs are roiling with one or more planet-size storms akin to Jupiter’s “Great Red Spot.”

    NASA Spitzer Telescope
    Spitzer

    “As the brown dwarfs spin on their axis, the alternation of what we think are cloud-free and cloudy regions produces a periodic brightness variation that we can observe,” said Stanimir Metchev of Western University, Ontario, Canada. “These are signs of patchiness in the cloud cover.”

    Metchev is principal investigator of the brown dwarf research. The results were presented at a news conference today at the 223rd annual meeting of the American Astronomical Society in Washington by Metchev’s colleague, Aren Heinze, of Stony Brook University, New York.

    Brown dwarfs form as stars do, but lack the mass to fuse atoms continually and blossom into full-fledged stars. They are, in some ways, the massive kin to Jupiter.

    Scientists think that the cloudy regions on brown dwarfs take the form of torrential storms, accompanied by winds and, possibly, lightning more violent than that at Jupiter or any other planet in our solar system. However, the brown dwarfs studied so far are too hot for water rain; instead, astronomers believe the rain in these storms, like the clouds themselves, is made of hot sand, molten iron or salts.

    In a Spitzer program named “Weather on Other Worlds,” astronomers used the infrared space telescope to watch 44 brown dwarfs as they rotated on their axis for up to 20 hours. Previous results had suggested that some brown dwarfs have turbulent weather, so the scientists had expected to see a small fraction vary in brightness over time. However, to their surprise, half of the brown dwarfs showed the variations. When you take into account that half of the objects would be oriented in such a way that their storms would be either hidden or always in view and unchanging, the results indicate that most, if not all, brown dwarfs are racked by storms.

    “We needed Spitzer to do this,” said Metchev. “Spitzer is in space, above the thermal glow of the Earth’s atmosphere, and it has the sensitivity required to see variations in the brown dwarfs’ brightness.”

    See the full article here.

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 2:40 pm on January 8, 2014 Permalink | Reply
    Tags: , , , , NASA Spitzer,   

    From NASA/Spitzer: “NASA’s Hubble and Spitzer Team up to Probe Faraway Galaxies” 



    Spitzer

    01.07.14
    No Writer Credit

    NASA’s Hubble and Spitzer Space Telescopes are providing a new perspective on the remote universe, including new views of young and distant galaxies bursting with stars. Scientists described the findings Tuesday in a news conference sponsored by the American Astronomical Society.

    galaxies

    The discoveries include four unusually bright galaxies as they appeared 13 billion years ago and the deepest image ever obtained of a galaxy cluster.

    The ultra-bright, young galaxies, discovered using data from Hubble and Spitzer, are bursting with star-formation activity, which accounts for their brilliance. The brightest one is forming stars approximately 50 times faster than our Milky Way galaxy does today. These fledgling galaxies are only one-twentieth the size of the Milky Way, but they probably contain about 1 billion stars crammed together.

    Although Hubble has previously identified galaxies at this early epoch, astronomers were surprised to find objects that are about 10 to 20 times more luminous than anything seen previously.

    “These just stuck out like a sore thumb because they are far brighter than we anticipated,” explained Garth Illingworth of the University of California at Santa Cruz. “There are strange things happening regardless of what these sources are. We’re suddenly seeing luminous, massive galaxies quickly build up at such an early time. This was quite unexpected.”

    The galaxies were first detected with Hubble. Its sharp images are crucial to finding such distant galaxies and enabled the astronomers to measure their star-formation rates and sizes. Using Spitzer, the astronomers were able to estimate the stellar masses by measuring the total stellar luminosity of the galaxies.

    “This is the first time scientists were able to measure an object’s mass at such a huge distance,” said Pascal Oesch of Yale University in New Haven, Conn. “It’s a fabulous demonstration of the synergy between Hubble and Spitzer.”

    The result bodes well for NASA’s James Webb Space Telescope, currently in development. Scientists anticipate using Webb to look even further back in time to find young, growing galaxies as they existed only a few hundred million years after the universe began in the big bang.

    An unprecedented long-distance view of the universe comes from an ambitious collaborative project with Hubble called The Frontier Fields. It is the longest and deepest exposure obtained to date of a cluster of galaxies, and shows some of the faintest and youngest galaxies ever detected. The image contains several hundred galaxies as they looked 3.5 billion years ago.

    Appearing in the foreground of the image is Abell 2744, a massive galaxy cluster located in the constellation Sculptor. The immense gravity in Abell 2744 is being used as a lens to warp space and brighten and magnify images of more distant background galaxies. The more distant galaxies appear as they did longer than 12 billion years ago, not long after the big bang.

    abel 2744
    Abell 2744, nicknamed Pandora’s Cluster. The galaxies in the cluster make up less than five percent of its mass. The gas (around 20 percent) is so hot that it shines only in X-rays (coloured red in this image). The distribution of invisible dark matter (making up around 75 percent of the cluster’s mass) is coloured here in blue.

    The Hubble exposure reveals almost 3,000 of these background galaxies interleaved with images of hundreds of foreground galaxies in the cluster. Their images not only appear brighter, but also smeared, stretched and duplicated across the field. Because of the gravitational lensing phenomenon, the background galaxies are magnified to appear as much as 10 to 20 times larger than they would normally appear. Furthermore, the faintest of these highly magnified objects is 10 to 20 times fainter than any galaxy observed previously. Without the boost from gravitational lensing, the many background galaxies would be invisible.

    The Hubble exposure will be combined with images from Spitzer and NASA’s Chandra X-ray Observatory to provide new insight into the origin and evolution of galaxies and their accompanying black holes.

    See the full article here.

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.
    i1 i2


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 2:27 pm on January 8, 2014 Permalink | Reply
    Tags: , , , , NASA Spitzer   

    From NASA/Spitzer: ” Hot and Cold in the M100 Galaxy” 



    Spitzer

    The galaxy Messier 100, or M100, shows its swirling spiral in this infrared image from NASAs Spitzer Space Telescope. The arcing spiral arms of dust and gas that harbor starforming regions glow vividly when seen in the infrared.

    m100

    M100 is a classic example of a grand design spiral galaxy, with prominent and well-defined spiral arms winding from the hot center, out to the cooler edges of the galaxy. It is located about 55 million light years away from Earth, in the little-known constellation of Coma Berenices, near to the more recognizable Leo.

    In the center, we can see a prominent ring of hot, bright dust surrounding the inner galactic core. Moving further out, the spiral arms peter out towards the edges of the galaxy, where thick webs of dust dominate. Beyond the edges of the dust clouds, a faint blue glow of stars extends to the edge of the galaxys disk.

    Two small companion galaxies, known as NGC 4323 and NGC 4328, appear as fuzzy blue blobs on the upper side of M100. These so-called lenticular galaxies are virtually clear of any dust, so they lack any of the red/green glow seen in their bigger neighbor. The shape of M100 is probably being perturbed by the gravity of these galaxies.

    M100 was discovered in 1781, and is now known to stretch roughly 160,000 light years from one side to the other, making it about one and a half times the size of our own Milky Way galaxy. By studying these infrared images of M100, astronomers can map out the structure of the stars and dust, and study the ways in which galaxies like our Milky Way were formed.

    M100 is well-known to astronomers because of the five stars that have become supernovae within the galaxy between 1901 and 2006. These exploding stars are extremely useful for helping astronomers to calibrate distance scales in the universe, and to estimate the age of the universe since its creation in the Big Bang.

    The green regions reveal dust clouds that light up under the illumination of the surrounding stars. The longer infrared wavelengths, which trace the thermal glow of the hottest dust, are overlaid in red. This gives the areas of strongest star formation a reddish/white glow; this is particularly strong in the central ring. The stars themselves shine most brightly at the shorter infrared wavelengths, showing up here in blue. The blue dots covering the entire image are stars that lie between us and M100.

    Infrared light with wavelengths of 3.6 and 4.5 microns is shown as blue/cyan, showing primarily the glow from starlight. 8 micron light is rendered in green, and 24 micron emission is red, tracing the cooler and warmer components of dust, respectively.

    See the full article here.

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.
    i1 i2


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 8:00 pm on January 2, 2014 Permalink | Reply
    Tags: , , , , NASA Spitzer   

    From NASA/Spitzer: ” Infrared View of the Eagle Nebula” 2007 



    Spitzer

    This infrared picture highlights the contrast between the hot, supernova-heated dust (green) and the cooler dust making up the Eagle Nebula [Messier 16]‘s dusty star-forming clouds and towers (red, blue and purple).The image includes longer infrared wavelengths, and is a composite of light of 4.5 to 8.0 microns (blue); 24 microns (green); and 70 microns (red).

    eagle
    Credit NASA/JPL-Caltech/N. Flagey (IAS/SSC) & A. Noriega-Crespo (SSC/Caltech)
    Date 2007-01-09
    Observers
    S. Carey (SSC/Caltech) A. Noriega-Crespo (SSC/Caltech) F. Boulanger (IAS, France) S. Price (AFRL) R. Indebetouw (U. Virginia) N. Flagey (IAS/SSC) R. Paladini (SSC/Caltech) S. Shenoy (SSC/Caltech) F. Marleau (SSC/Caltech) K. Kraemer (AFRL) D. Mizuno (Boston College) D. Padgett (SSC/Caltech) T. Kuchar (Boston College)

    See the full article here.

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.
    i1 i2


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 4:47 pm on December 27, 2013 Permalink | Reply
    Tags: , , , , NASA Spitzer   

    From NASA/Spitzer: “An X-Ray Santa Claus in Orion” 2007 



    Spitzer

    Right in time for the festive season, this image of the Orion nebula combines NASA’s Spitzer Space Telescope infrared light with X-ray light to reveal a huge cloud of high-temperature gas resting in a spectacular nearby star-forming region, shaped somewhat like the silhouette of Santa Claus. An early present for astronomers, the cloud suggests that hot gas from many star-forming regions leaks into the interstellar medium.

    orion
    Credit: AAAS/Science (ESA XMM-Newton and NASA’s Spitzer Space Telescope)
    Date 2007-11-30

    The Orion nebula is the nearest dense star-forming region to Earth that contains stars much more massive than the Sun. This newly-discovered gas cloud is composed of winds blowing from these high-mass stars that are heated to millions of degrees as they slam into the surrounding gas.

    “There is one star in particular that dominates the nebula”, says Manuel Gdel, Paul Scherrer Institut, Switzerland, who led the team that discovered the gas. The star in question is Theta 1 Orionis C, a giant star around 40 times mass of the Sun, with a surface temperature of 40,000C. Gdel and his colleagues think that the violent collision between the wind from this star and the surrounding dense gas is largely responsible for the newly-discovered hot gas cloud.

    The high-temperature gas fills a region of the nebula that appears to be a huge cavity in optical and infrared images. The new observations, taken with XMM-Newtons European Photon Imaging Camera (EPIC) camera, suggest that astronomers are seeing only a particular portion of the gas. The X-rays from this portion escape absorption by patches of cold gas covering much of the front of the Orion nebula.

    camera
    EPIC

    The surrounding pattern of absorbing clouds gives the detected gas its Santa Claus shape, with his prominent hat outlined by the northern gas bubble. In its entirety, the hot gas probably fills the whole nebula.

    See the full article here.

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.
    i1 i2


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 4:03 pm on November 19, 2013 Permalink | Reply
    Tags: , , , , NASA Spitzer   

    From NASA/Spitzer: “The Infrared Hunter” 



    Spitzer

    08.14.06

    This image composite compares infrared and visible views of the famous Orion nebula and its surrounding cloud, an industrious star-making region located near the hunter constellation’s sword. The infrared picture is from NASA’s Spitzer Space Telescope, and the visible image is from the National Optical Astronomy Observatory, headquartered in Tucson, Ariz.

    m42
    Date 2006-08-14
    Credit Spitzer: NASA/JPL-Caltech/ T. Megeath (University of Toledo, Ohio)
    Observers Tom Megeath (Univ. of Toledo) Rob Gutermuth (SAO) Joe Hora (SAO) Lori Allen (SAO) Kevin Flaherty (Steward Obs.) John Stauffer (SSC) Lee Hartmann (Univ. of Michigan) James Muzerolle (Steward Obs.) Phil Myers (SAO) Nick Siegler (Steward Obs.) Erick Young (Steward Obs.) Giovanni Fazio (SAO)

    orion
    Another view, NASA/ESA Hubble

    In addition to Orion, two other nebulas can be seen in both pictures. The Orion nebula, or M42, is the largest and takes up the lower half of the images; the small nebula to the upper left of Orion is called M43; and the medium-sized nebula at the top is NGC 1977. Each nebula is marked by a ring of dust that stands out in the infrared view. These rings make up the walls of cavities that are being excavated by radiation and winds from massive stars. The visible view of the nebulas shows gas heated by ultraviolet radiation from the massive stars.

    Above the Orion nebula, where the massive stars have not yet ejected much of the obscuring dust, the visible image appears dark with only a faint glow. In contrast, the infrared view penetrates the dark lanes of dust, revealing bright swirling clouds and numerous developing stars that have shot out jets of gas (green). This is because infrared light can travel through dust, whereas visible light is stopped short by it.

    The infrared image shows light captured by Spitzer’s infrared array camera. Light with wavelengths of 8 and 5.8 microns (red and orange) comes mainly from dust that has been heated by starlight. Light of 4.5 microns (green) shows hot gas and dust; and light of 3.6 microns (blue) is from starlight.

    See the full article here.

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.
    i1 i2


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 10:21 pm on November 15, 2013 Permalink | Reply
    Tags: , , , , NASA Spitzer   

    From NASA/Spitzer: “Seeing Stars in Serpens” 



    Spitzer

    10.24.06

    Infant stars are glowing gloriously in this infrared image of the Serpens star-forming region, captured by NASA’s Spitzer Space Telescope.

    serp
    Credit NASA/JPL-Caltech/L. Cieza (University of Texas at Austin)
    Date 2006-10-24

    Observers
    Lucas Cieza (University of Texas at Austin), Neal Evans (University of Texas at Austin), Giovanni Fazio (Harvard Smithsonian Center for Astrophysics), Paul Harvey (University of Texas at Austin), Ewine Van Dischoeck (Sterrewacht Leiden, Netherlands)

    The reddish-pink dots are baby stars deeply embedded in the cosmic cloud of gas and dust that collapsed to create it. A dusty disk of cosmic debris, or “protoplanetary disk,” that may eventually form planets, surrounds the infant stars.

    Wisps of green throughout the image indicate the presence of carbon rich molecules called, Polycyclic Aromatic Hydrocarbons (PAHs). On Earth, PAHs can be found on charred barbecue grills and in automobile exhaust. Blue specks sprinkled throughout the image are background stars in our Milky Way Galaxy.

    The Serpens star-forming region is located approximately 848 light-years away in the Serpens constellation.

    The image is a three-channel false-color composite, where emission at 4.5 microns is blue, emission at 8.0 microns is green, and 24 micron emission is red.

    See the full article here.

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.
    i1 i2


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 12:27 pm on November 11, 2013 Permalink | Reply
    Tags: , , , , , NASA Spitzer   

    From NASA/Spitzer: “Spitzer and ALMA Reveal a Star’s Bubbly Birth” 



    Spitzer

    November 11, 2013
    Whitney Clavin 818-354-4673
    Jet Propulsion Laboratory, Pasadena, Calif.
    whitney.clavin@jpl.nasa.gov

    It’s a bouncing baby . . . star! Combined observations from NASA’s Spitzer Space Telescope and the newly completed Atacama Large Millimeter/submillimeter Array (ALMA) in Chile have revealed the throes of stellar birth as never before in the well-studied object known as HH 46/47.

    star
    Date added 2013-11-11

    Herbig-Haro (HH) objects form when jets shot out by newborn stars collide with surrounding material, producing small, bright, nebulous regions. To our eyes, the dynamics within many HH objects are obscured by enveloping gas and dust. But the infrared and submillimeter wavelengths of light seen by Spitzer and ALMA, respectively, pierce the dark cosmic cloud around HH 46/47 to let us in on the action.

    The Spitzer observations show twin supersonic jets emanating from the central star that blast away surrounding gas and set it alight into two bubbly lobes. HH 46/47 happens to sit on the edge of its enveloping cloud in such a way that the jets pass through two differing cosmic environments. The rightward jet, heading into the cloud, is plowing through a “wall” of material, while the leftward jet’s path out of the cloud is relatively unobstructed, passing through less material. This orientation serves scientists well by offering a handy compare-and-contrast setup for how the outflows from a developing star interact with their surroundings.

    “Young stars like our sun need to remove some of the gas collapsing in on them to become stable, and HH 46/47 is an excellent laboratory for studying this outflow process,” said Alberto Noriega-Crespo, a scientist at the Infrared Processing and Analysis Center at the California Institute of Technology, Pasadena, Calif. “Thanks to Spitzer, the HH 46/47 outflow is considered one of the best examples of a jet being present with an expanding bubble-like structure.”

    Noriega-Crespo led the team that began studying HH 46/47 with Spitzer nearly 10 years ago when the telescope first began observing the heavens. Now, using a new image processing technique developed in the past few years, he and his colleagues have been able to render HH 46/47 in higher resolution.

    Meanwhile, the fresh views of HH 46/47 by ALMA have revealed that the gas in the lobes is expanding faster than previously thought. This faster expansion has an influence on the overall amount of turbulence in the gaseous cloud that originally spawned the star. In turn, the extra turbulence could have an impact on whether and how other stars might form in this gaseous, dusty, and thus fertile, ground for star-making.

    A team led by Hector Arce at Yale University, New Haven, Conn., carried out the ALMA observations and their analysis was published recently in The Astrophysical Journal.

    ESO ALMA Array
    ALMA

    See the full article here.

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.
    i1 i2


    ScienceSprings is powered by MAINGEAR computers

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 248 other followers

%d bloggers like this: