Tagged: NASA JPL Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:13 pm on December 18, 2014 Permalink | Reply
    Tags: , , NASA JPL, NASA Orbiting Carbon Observatory-2   

    From JPL: “NASA’s Spaceborne Carbon Counter Maps New Details” 

    JPL

    December 18, 2014
    Carol Rasmussen
    NASA Earth Science News Team

    The first global maps of atmospheric carbon dioxide from NASA’s new Orbiting Carbon Observatory-2 mission demonstrate its performance and promise, showing elevated carbon dioxide concentrations across the Southern Hemisphere from springtime biomass burning.

    At a media briefing today at the American Geophysical Union meeting in San Francisco, scientists from NASA’s Jet Propulsion Laboratory, Pasadena, California; Colorado State University (CSU), Fort Collins; and the California Institute of Technology, Pasadena, presented the maps of carbon dioxide and a related phenomenon known as solar-induced chlorophyll fluorescence and discussed their potential implications.

    A global map covering Oct. 1 through Nov. 17 shows elevated carbon dioxide concentrations in the atmosphere above northern Australia, southern Africa and eastern Brazil.

    g
    Global atmospheric carbon dioxide concentrations from Oct. 1 through Nov. 11, as recorded by NASA’s Orbiting Carbon Observatory-2. Image credit: NASA/JPL-Caltech

    2
    This map shows solar-induced fluorescence, a plant process that occurs during photosynthesis, from Aug. through Oct. 2014 as measured by NASA’s Orbiting Carbon Observatory-2. Image credit: NASA/JPL-Caltech

    “Preliminary analysis shows these signals are largely driven by the seasonal burning of savannas and forests,” said OCO-2 Deputy Project Scientist Annmarie Eldering, of JPL. The team is comparing these measurements with data from other satellites to clarify how much of the observed concentration is likely due to biomass burning.

    The time period covered by the new maps is spring in the Southern Hemisphere, when agricultural fires and land clearing are widespread. The impact of these activities on global carbon dioxide has not been well quantified. As OCO-2 acquires more data, Eldering said, its Southern Hemisphere measurements could lead to an improved understanding of the relative importance in these regions of photosynthesis in tropical plants, which removes carbon dioxide from the atmosphere, and biomass burning, which releases carbon dioxide to the atmosphere.

    The early OCO-2 data hint at some potential surprises to come. “The agreement between OCO-2 and models based on existing carbon dioxide data is remarkably good, but there are some interesting differences,” said Christopher O’Dell, an assistant professor at CSU and member of OCO-2’s science team. “Some of the differences may be due to systematic errors in our measurements, and we are currently in the process of nailing these down. But some of the differences are likely due to gaps in our current knowledge of carbon sources in certain regions — gaps that OCO-2 will help fill in.”

    Carbon dioxide in the atmosphere has no distinguishing features to show what its source was. Elevated carbon dioxide over a region could have a natural cause — for example, a drought that reduces plant growth — or a human cause. At today’s briefing, JPL scientist Christian Frankenberg introduced a map using a new type of data analysis from OCO-2 that can help scientists distinguish the gas’s natural sources.

    Through photosynthesis, plants remove carbon dioxide from the air and use sunlight to synthesize the carbon into food. Plants end up re-emitting about one percent of the sunlight at longer wavelengths. Using one of OCO-2’s three spectrometer instruments, scientists can measure the re-emitted light, known as solar-induced chlorophyll fluorescence (SIF). This measurement complements OCO-2’s carbon dioxide data with information on when and where plants are drawing carbon from the atmosphere.

    “Where OCO-2 really excels is the sheer amount of data being collected within a day, about one million measurements across a narrow swath,” Frankenberg said. “For fluorescence, this enables us, for the first time, to look at features on the five- to 10-kilometer scale on a daily basis.” SIF can be measured even through moderately thick clouds, so it will be especially useful in understanding regions like the Amazon where cloud cover thwarts most spaceborne observations.

    The changes in atmospheric carbon dioxide that OCO-2 seeks to measure are so small that the mission must take unusual precautions to ensure the instrument is free of errors. For that reason, the spacecraft was designed so that it can make an extra maneuver. In addition to gathering a straight line of data like a lawnmower swath, the instrument can point at a single target on the ground for a total of seven minutes as it passes overhead. That requires the spacecraft to turn sideways and make a half cartwheel to keep the target in its sights.

    The targets OCO-2 uses are stations in the Total Carbon Column Observing Network (TCCON), a collaborative effort of multiple international institutions. TCCON has been collecting carbon dioxide data for about five years, and its measurements are fully calibrated and extremely accurate. At the same time that OCO-2 targets a TCCON site, a ground-based instrument at the site makes the same measurement. The extent to which the two measurements agree indicates how well calibrated the OCO-2 sensors are.

    Additional maps released today showed the results of these targeting maneuvers over two TCCON sites in California and one in Australia. “Early results are very promising,” said Paul Wennberg, a professor at Caltech and head of the TCCON network. “Over the next few months, the team will refine the OCO-2 data, and we anticipate that these comparisons will continue to improve.”

    To learn more about OCO-2, visit:

    http://oco2.jpl.nasa.gov/

    NASA monitors Earth’s vital signs from land, air and space with a fleet of satellites and ambitious airborne and ground-based observation campaigns. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records and computer analysis tools to better see how our planet is changing. The agency shares this unique knowledge with the global community and works with institutions in the United States and around the world that contribute to understanding and protecting our home planet.

    For more information about NASA’s Earth science activities this year, see:

    http://www.nasa.gov/earthrightnow

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
  • richardmitnick 4:09 pm on December 16, 2014 Permalink | Reply
    Tags: , , , NASA JPL   

    From NASA: “NASA Rover Finds Active, Ancient Organic Chemistry on Mars” 

    NASA

    NASA

    December 16, 2014

    Dwayne Brown
    Headquarters, Washington
    202-358-1726
    dwayne.c.brown@nasa.gov

    Guy Webster
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-6278
    guy.webster@jpl.nasa.gov

    Nancy Neal Jones
    Goddard Space Flight Center, Greenbelt, Md.
    301-286-0039
    nancy.n.jones@nasa.gov

    NASA’s Mars Curiosity rover has measured a tenfold spike in methane, an organic chemical, in the atmosphere around it and detected other organic molecules in a rock-powder sample collected by the robotic laboratory’s drill.

    NASA Mars Curiosity Rover
    Curiosity

    “This temporary increase in methane — sharply up and then back down — tells us there must be some relatively localized source,” said Sushil Atreya of the University of Michigan, Ann Arbor, and Curiosity rover science team. “There are many possible sources, biological or non-biological, such as interaction of water and rock.”

    Researchers used Curiosity’s onboard Sample Analysis at Mars (SAM) laboratory a dozen times in a 20-month period to sniff methane in the atmosphere. During two of those months, in late 2013 and early 2014, four measurements averaged seven parts per billion. Before and after that, readings averaged only one-tenth that level.

    3
    NASA’s Mars rover Curiosity drilled into this rock target, “Cumberland,” during the 279th Martian day, or sol, of the rover’s work on Mars (May 19, 2013) and collected a powdered sample of material from the rock’s interior.
    Image Credit: NASA/JPL-Caltech/MSSS

    Curiosity also detected different Martian organic chemicals in powder drilled from a rock dubbed Cumberland, the first definitive detection of organics in surface materials of Mars. These Martian organics could either have formed on Mars or been delivered to Mars by meteorites.

    8
    This image illustrates possible ways methane might be added to Mars’ atmosphere (sources) and removed from the atmosphere (sinks). NASA’s Curiosity Mars rover has detected fluctuations in methane concentration in the atmosphere, implying both types of activity occur on modern Mars.
    Image Credit: NASA/JPL-Caltech/SAM-GSFC/Univ. of Michigan

    Organic molecules, which contain carbon and usually hydrogen, are chemical building blocks of life, although they can exist without the presence of life. Curiosity’s findings from analyzing samples of atmosphere and rock powder do not reveal whether Mars has ever harbored living microbes, but the findings do shed light on a chemically active modern Mars and on favorable conditions for life on ancient Mars.

    “We will keep working on the puzzles these findings present,” said John Grotzinger, Curiosity project scientist of the California Institute of Technology in Pasadena (Caltech). “Can we learn more about the active chemistry causing such fluctuations in the amount of methane in the atmosphere? Can we choose rock targets where identifiable organics have been preserved?”

    Researchers worked many months to determine whether any of the organic material detected in the Cumberland sample was truly Martian. Curiosity’s SAM lab detected in several samples some organic carbon compounds that were, in fact, transported from Earth inside the rover. However, extensive testing and analysis yielded confidence in the detection of Martian organics.

    Identifying which specific Martian organics are in the rock is complicated by the presence of perchlorate minerals in Martian rocks and soils. When heated inside SAM, the perchlorates alter the structures of the organic compounds, so the identities of the Martian organics in the rock remain uncertain.

    “This first confirmation of organic carbon in a rock on Mars holds much promise,” said Curiosity participating scientist Roger Summons of the Massachusetts Institute of Technology in Cambridge. “Organics are important because they can tell us about the chemical pathways by which they were formed and preserved. In turn, this is informative about Earth-Mars differences and whether or not particular environments represented by Gale Crater sedimentary rocks were more or less favorable for accumulation of organic materials. The challenge now is to find other rocks on Mount Sharp that might have different and more extensive inventories of organic compounds.”

    Researchers also reported that Curiosity’s taste of Martian water, bound into lakebed minerals in the Cumberland rock more than three billion years ago, indicates the planet lost much of its water before that lakebed formed and continued to lose large amounts after.

    SAM analyzed hydrogen isotopes from water molecules that had been locked inside a rock sample for billions of years and were freed when SAM heated it, yielding information about the history of Martian water. The ratio of a heavier hydrogen isotope, deuterium, to the most common hydrogen isotope can provide a signature for comparison across different stages of a planet’s history.

    “It’s really interesting that our measurements from Curiosity of gases extracted from ancient rocks can tell us about loss of water from Mars,” said Paul Mahaffy, SAM principal investigator of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author of a report published online this week by the journal Science.

    The ratio of deuterium to hydrogen has changed because the lighter hydrogen escapes from the upper atmosphere of Mars much more readily than heavier deuterium. In order to go back in time and see how the deuterium-to-hydrogen ratio in Martian water changed over time, researchers can look at the ratio in water in the current atmosphere and water trapped in rocks at different times in the planet’s history.

    Martian meteorites found on Earth also provide some information, but this record has gaps. No known Martian meteorites are even close to the same age as the rock studied on Mars, which formed about 3.9 billion to 4.6 billion years ago, according to Curiosity’s measurements.

    The ratio that Curiosity found in the Cumberland sample is about one-half the ratio in water vapor in today’s Martian atmosphere, suggesting much of the planet’s water loss occurred since that rock formed. However, the measured ratio is about three times higher than the ratio in the original water supply of Mars, based on assumption that supply had a ratio similar to that measured in Earth’s oceans. This suggests much of Mars’ original water was lost before the rock formed.

    Curiosity is one element of NASA’s ongoing Mars research and preparation for a human mission to Mars in the 2030s. Caltech manages the Jet Propulsion Laboratory in Pasadena, California, and JPL manages Curiosity rover science investigations for NASA’s Science Mission Directorate in Washington. The SAM investigation is led by Paul Mahaffy of Goddard. Two of SAM instruments key in these discoveries are the Quadrupole Mass Spectrometer, developed at Goddard, and the Tunable Laser Spectrometer, developed at JPL.

    The results of the Curiosity rover investigation into methane detection and the Martian organics in an ancient rock were discussed at a news briefing Tuesday at the American Geophysical Union’s convention in San Francisco. The methane results are described in a paper published online this week in the journal Science by NASA scientist Chris Webster of JPL, and co-authors.

    A report on organics detection in the Cumberland rock by NASA scientist Caroline Freissenet, of Goddard, and co-authors, is pending publication.

    For copies of the new Science papers about Mars methane and water, visit:

    http://go.nasa.gov/1cbk35X

    For more information about Curiosity, visit:

    http://www.nasa.gov/msl

    and

    http://mars.jpl.nasa.gov/msl/

    Learn about NASA’s Journey to Mars at:

    http://www.nasa.gov/content/nasas-journey-to-mars/

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 8:26 pm on December 15, 2014 Permalink | Reply
    Tags: , , , , NASA JPL,   

    From JPL: “NASA Voyager: ‘Tsunami Wave’ Still Flies Through Interstellar Space” 

    JPL

    December 15, 2014

    Media Contact
    Elizabeth Landau
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-6425
    Elizabeth.Landau@jpl.nasa.gov

    •The Voyager 1 spacecraft has experienced three shock waves

    • The most recent shock wave, first observed in February 2014, still appears to be going on

    • One wave, previously reported, helped researchers determine that Voyager 1 had entered interstellar space

    v
    NASA/Voyager

    The “tsunami wave” that NASA’s Voyager 1 spacecraft began experiencing earlier this year is still propagating outward, according to new results. It is the longest-lasting shock wave that researchers have seen in interstellar space.

    “Most people would have thought the interstellar medium would have been smooth and quiet. But these shock waves seem to be more common than we thought,” said Don Gurnett, professor of physics at the University of Iowa in Iowa City. Gurnett presented the new data Monday, Dec. 15 at the American Geophysical Union meeting in San Francisco.

    A “tsunami wave” occurs when the sun emits a coronal mass ejection, throwing out a magnetic cloud of plasma from its surface. This generates a wave of pressure. When the wave runs into the interstellar plasma — the charged particles found in the space between the stars — a shock wave results that perturbs the plasma.

    cme
    CME (Photo: NASA/GSFC/SDO)

    “The tsunami causes the ionized gas that is out there to resonate — “sing” or vibrate like a bell,” said Ed Stone, project scientist for the Voyager mission based at California Institute of Technology in Pasadena.

    This is the third shock wave that Voyager 1 has experienced. The first event was in October to November of 2012, and the second wave in April to May of 2013 revealed an even higher plasma density. Voyager 1 detected the most recent event in February, and it is still going on as of November data. The spacecraft has moved outward 250 million miles (400 million kilometers) during the third event.

    “This remarkable event raises questions that will stimulate new studies of the nature of shocks in the interstellar medium,” said Leonard Burlaga, astrophysicist emeritus at NASA Goddard Spaceflight Center in Greenbelt, Maryland, who analyzed the magnetic field data that were key to these results.

    It is unclear to researchers what the unusual longevity of this particular wave may mean. They are also uncertain as to how fast the wave is moving or how broad a region it covers.

    The second tsunami wave helped researchers determine in 2013 that Voyager 1 had left the heliosphere, the bubble created by the solar wind encompassing the sun and the planets in our solar system. Denser plasma “rings” at a higher frequency, and the medium that Voyager flew through, was 40 times denser than what had been previously measured. This was key to the conclusion that Voyager had entered a frontier where no spacecraft had gone before: interstellar space.

    “The density of the plasma is higher the farther Voyager goes,” Stone said. “Is that because the interstellar medium is denser as Voyager moves away from the heliosphere, or is it from the shock wave itself? We don’t know yet.”

    Gurnett, principal investigator of the plasma wave instrument on Voyager, expects that such shock waves propagate far out into space, perhaps even to twice the distance between the sun and where the spacecraft is right now.

    Voyager 1 and its twin, Voyager 2, were launched 16 days apart in 1977. Both spacecraft flew by Jupiter and Saturn. Voyager 2 also flew by Uranus and Neptune. Voyager 2, launched before Voyager 1, is the longest continuously operated spacecraft and is expected to enter interstellar space in a few years.

    JPL, a division of Caltech, built the twin Voyager spacecraft and operates them for the Heliophysics Division within NASA’s Science Mission Directorate in Washington.

    For more information on the Voyager mission, visit:

    http://voyager.jpl.nasa.gov

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
  • richardmitnick 2:02 pm on December 10, 2014 Permalink | Reply
    Tags: , , , , , NASA JPL   

    From JPL- “Saturn’s Moons: What a Difference a Decade Makes “ 

    JPL

    December 9, 2014
    Preston Dyches
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-7013
    preston.dyches@jpl.nasa.gov

    Almost immediately after NASA’s twin Voyager spacecraft made their brief visits to Saturn in the early 1980s, scientists were hungry for more. The Voyagers had offered them only a brief glimpse of a family of new worlds — Saturn’s icy moons — and the researchers were eager to spend more time among those bodies.

    NASA Voyager 1
    NASA/Voyager 1

    NASA Voyager 2
    NASA/Voyager 2

    The successor to the Voyagers at Saturn, NASA’s Cassini spacecraft, has spent the past 10 years collecting images and other data as it has toured the Ringed Planet and its family of satellites. New color maps, produced from this trove of data, show that Cassini has essentially fulfilled one of its many mission objectives: producing global maps of Saturn’s six major icy moons.

    NASA Cassini Spacecraft
    NASA/Cassini

    These are the large Saturnian moons, excluding haze-covered Titan, known before the start of the Space Age: Mimas, Enceladus, Tethys, Dione, Rhea and Iapetus. Aside from a gap in the north polar region of Enceladus (to be filled in next year), and some areas of Iapetus, this objective is now more or less complete.

    Before (Voyager)
    m

    After (Cassini)
    a
    Mimas

    Before (Voyager)
    e
    After (Cassini)
    a
    Enceladus.

    Before (Voyager)
    t
    After (Cassini)
    k
    Tethys

    Before (Voyager)
    d
    After (Cassini)
    s
    Dione

    Before (Voyager)
    r
    After (Cassini)
    r
    Rhea

    Before (Voyager)
    l
    After (Cassini)
    j
    Iapetus

    All maps Image Credit: NASA/JPL-Caltech/SSI/LPI

    The new maps are the best global, color maps of these moons to date, and the first to show natural brightness variations and high-resolution color together. Colors in the maps represent a broader range than human vision, extending slightly into infrared and ultraviolet wavelengths. Differences in color across the moons’ surfaces that are subtle in natural-color views become much easier to study in these enhanced colors.

    Cassini’s enhanced color views have yielded several important discoveries about the icy moons. The most obvious are differences in color and brightness between the two hemispheres of Tethys, Dione and Rhea. The dark reddish colors on the moons’ trailing hemispheres are due to alteration by charged particles and radiation in Saturn’s magnetosphere. Except for Mimas and Iapetus, the blander leading hemispheres of these moons — that is, the sides that always face forward as the moons orbit Saturn — are all coated with icy dust from Saturn’s E-ring, formed from tiny particles erupting from the south pole of Enceladus.

    Enceladus itself displays a variety of colorful features. Some of the gas and dust being vented into space from large fractures near the moon’s south pole returns to the surface and paints Enceladus with a fresh coating. The yellow and magenta tones in Cassini’s color map are thought to be due to differences in the thickness of these deposits. Many of the most recently formed fractures on Enceladus, those near the south pole in particular, have a stronger ultraviolet signature, which appears bluish in these maps. Their color may be due to large-grained ice exposed on the surface, not unlike blue ice seen in some places in Earth’s Arctic.

    The new maps were produced by Paul Schenk, a participating scientist with the Cassini imaging team based at the Lunar and Planetary Institute in Houston.

    The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory in Pasadena, California, manages the Cassini and Voyager missions for NASA’s Science Mission Directorate in Washington. The two Voyager spacecraft and the Cassini orbiter, along with its two onboard cameras, were designed, developed and assembled at JPL. The Cassini imaging team consists of scientists from the United States, England, France and Germany. The imaging team is based at the Space Science Institute in Boulder, Colorado.

    More information about Cassini is available at the following sites:

    http://www.nasa.gov/cassini

    http://saturn.jpl.nasa.gov

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
  • richardmitnick 5:16 pm on December 9, 2014 Permalink | Reply
    Tags: , , , , NASA JPL   

    From JPL: “OPALS: Light Beams Let Data Rates Soar” 

    JPL

    December 9, 2014

    Elizabeth Landau
    NASA’s Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-6425
    elizabeth.landau@jpl.nasa.gov

    You may know opals as fiery gemstones, but something special called OPALS is floating above us in space. On the International Space Station, the Optical Payload for Lasercomm Science (OPALS) is demonstrating how laser communications can speed up the flow of information between Earth and space, compared to radio signals.

    NASA OPALS
    OPALS

    “OPALS has shown that space-to-ground laser communications transmissions are practical and repeatable,” said Matthew Abrahamson, OPALS mission manager at NASA’s Jet Propulsion Laboratory in Pasadena, California. “As a bonus, OPALS has collected an enormous amount of data to advance the science of sending lasers through the atmosphere. We look forward to continuing our testing of this technology, which sends information to and from space faster than with radio signals.”

    Laser communication science has Earth benefits, too. Faster downlinks from space could mean people receive higher-definition video from both satellites orbiting our planet and spacecraft farther into space, including NASA’s Mars rovers. Laser communication technology also has the potential to provide faster Internet connections in remote areas on Earth. Anyone with an interest in high-speed, high-quality downloads may benefit from this technology — including researchers, engineers and consumers.

    OPALS has completed its four-month prime mission. In the next phase of the mission, OPALS scientists will look at how adaptive optics can increase the efficiency of the optical communications link. The lessons learned from OPALS will make future optical links more robust and reliable.

    OPALS launched to the space station aboard a SpaceX Dragon cargo capsule in April. The payload was able to establish an optical communications link when its laser locked onto a ground beacon emitted by the Optical Communications Telescope Laboratory’s ground station at JPL’s Table Mountain Observatory in Wrightwood, California. The technology uses a beacon with four individual lasers to average the effects of atmospheric turbulence.

    “Four lasers from the ground station travel through the sky toward the space station. Under clear, dark background conditions, it’s very easy for the payload to acquire the ground beacon. Daylight conditions have proven more challenging, but we are working on increasing capabilities during the day as well, through software enhancements,” Abrahamson said.

    OPALS had 18 successful passes from Table Mountain: nine during daylight and nine during nighttime. The payload was able to track the ground receiver with stunning accuracy.

    “At times, weather was a challenge, with clouds obscuring the lasers. The payload showed the capability to reacquire the signal after cloud blockage,” Abrahamson said.

    OPALS had its first success on June 5, a night pass lasting 148 seconds. It sent a copy of the same video (with the message, “Hello, World!”) every 3.5 seconds. With traditional downlink methods, the 175-megabit video would take 10 minutes to transmit.

    OPALS has also downlinked text. Lewis Carroll’s Alice’s Adventures in Wonderland was transmitted multiple times from the payload to the ground in June.

    In July, OPALS sent a high-definition video of the 1969 Apollo 11 moon landing, honoring the 45th anniversary of that historic event. This was the first video uploaded from the ground to OPALS after launch.

    “It took 12 hours to uplink the video using existing infrastructure, and OPALS downlinked it in just seven seconds,” Abrahamson said.

    The OPALS team downlinked engineering data, between 200 and 300 megabytes in size. Using standard methods, it would take about three hours to send this data; but with OPALS it took only 20 seconds. The data were reconstructed completely without encoding, highlighting the optical link’s low bit-error rate — the rate of errors relative to the total number of bits.

    International collaboration has also been important to the mission. OPALS attempted a handful of passes with the German Aerospace Center’s ground station in Oberpfaffenhofen, Germany, and with the European Space Agency’s ground station in Tenerife, Spain. These passes had varying levels of success.

    “We’re finding that differing weather patterns and geometry variations are proving to be challenging. We’ve had a half dozen or so pass attempts with varying levels of success, and we are looking to continuing these collaborations in the future,” Abrahamson said.

    “OPALS is going to change the way we communicate with and build spacecraft in the future,” Abrahamson said.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
  • richardmitnick 5:08 pm on December 5, 2014 Permalink | Reply
    Tags: , , , , , NASA JPL   

    From JPL: “Warm Gas Pours ‘Cold Water’ on Galaxy’s Star-Making” 

    JPL

    December 5, 2014

    Some like it hot, but for creating new stars, a cool cosmic environment is ideal. As a new study suggests, a surge of warm gas into a nearby galaxy — left over from the devouring of a separate galaxy — has extinguished star formation by agitating the available chilled gas.

    The unique findings illustrate a new dimension to galaxy evolution, and come courtesy of the European Space Agency’s Herschel space observatory, in which NASA played a key role, and NASA’s Spitzer and Hubble space telescopes.

    ESA Herschel
    ESA/Herschel

    NASA Spitzer Telescope
    NASA/Spitzer

    NASA Hubble Telescope
    NASA/ESA Hubble

    Astronomers want to understand why galaxies in the local universe fall into two major categories: younger, star-forming spirals (like our own Milky Way), and older ellipticals, in which fresh star making has ceased. The new study’s galaxy, NGC 3226, occupies a transitional middle ground, so getting a bead on its star formation is critical.

    n
    NGC 3227 (left) and NGC 3226 (right) galaxies by Hubble space telescope

    “We have explored the fantastic potential of big data archives from NASA’s Hubble, Spitzer and ESA’s Herschel observatory to pull together a picture of an elliptical galaxy that has undergone huge changes in its recent past due to violent collisions with its neighbors,” said Philip Appleton, project scientist for the NASA Herschel Science Center at the California Institute of Technology in Pasadena and lead author of a recent Astrophysical Journal paper detailing the results. “These collisions are modifying not only its structure and color, but also the condition of the gas that resides in it, making it hard — at the moment — for the galaxy to form many stars.”

    m
    A new feature in the evolution of galaxies has been captured in this image of galactic interactions. Credit: NASA/CFHT/NRAO/JPL-Caltech/Duc/Cuillandre

    NGC 3226 is relatively close, just 50 million light-years away. Several star-studded, gassy loops emanate from NGC 3226. Filaments also run out from it and between a companion galaxy, NGC 3227. These streamers of material suggest that a third galaxy probably existed there until recently — that is, until NGC 3226 cannibalized it, strewing pieces of the shredded galaxy all over the area.

    A prominent piece of these messy leftovers stretches 100,000 light-years and extends right into the core of NGC 3226. This long tail ends as a curved plume in a disk of warm hydrogen gas and a ring of dust. Contents of the tail, thought to be the debris from that departed galaxy, are falling into NGC 3226, drawn by its gravity.

    In many instances, adding material to galaxies in this manner rejuvenates them, triggering new rounds of star birth thanks to gas and dust gelling together. Yet data from the three telescopes agree that NGC 3226 has a very low rate of star formation. It appears that in this case, the material falling into NGC 3226 is heating up as it collides with other galactic gas and dust, quenching star formation instead of fueling it.

    The outcome could have been different, as NGC 3226 hosts a supermassive black hole at its center. The influx of gas and dust might have ended up just feeding the black hole, setting off energetic outpourings as the material crashed together while whirling toward its doom. Instead, the black hole in NGC 3226’s core is just snacking, not gorging, as the material has spread out in the galaxy’s central regions.

    “We are discovering that gas does not simply funnel down into the center of a galaxy and feed the supermassive black hole known to be lurking there,” Appleton said. “Rather, it gets hung up in a warm disk, shutting down star formation and probably frustrating the black hole’s growth by being too turbulent at this point in time.”

    NGC 3226 is considered something between a youthful “blue” galaxy and an old “red” galaxy. The colors refer to the predominantly galactic blue light radiated by giant, young stars — a telltale sign of recent star formation — and the reddish light cast by mature stars in the absence of new, blue ones.

    This intermediary galaxy illuminates how galaxies accruing fresh gas and dust can bloom with new stars or have their stellar factories close shop, at least temporarily. After all, as the warm gas flooding NGC 3226 cools to star-forming temperatures, the galaxy should get a second wind.

    Intriguingly, ultraviolet and optical light observations suggest that NGC 3226 may have produced more stars in the past, leading to its current intermediate color, somewhere between red and blue. The new study indicates that those traces of youth must indeed be lingering from higher levels of star formation, before the infalling gas scrambled the scene.

    “NGC 3226 will continue to evolve and may hatch abundant new stars in the future,” said Appleton. “We’re learning that the transition from young- to old-looking galaxies is not a one-way, but a two-way street.”

    Other authors of the report are: C. Mundell of Liverpool John Moores University, England; M. Lacy of National Radio Astronomy Observatory, Charlottesville, Virginia; V. Charmandaris of University of Creete, Greece; P-A. Duc of CEA-Saclay, France; U. Lisenfeld of University of Granda, Spain; and T. Bitsakis, K. Alatalo, L. Armus and P. Ogle of Caltech.

    Herschel is a European Space Agency mission, with science instruments provided by consortia of European institutes and with important participation by NASA. While the observatory stopped making science observations in April 2013, after running out of liquid coolant, as expected, scientists continue to analyze its data. NASA’s Herschel Project Office is based at NASA’s Jet Propulsion Laboratory, Pasadena, California. JPL contributed mission-enabling technology for two of Herschel’s three science instruments. The NASA Herschel Science Center, part of the Infrared Processing and Analysis Center at Caltech, supports the U.S. astronomical community.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
  • richardmitnick 1:28 pm on November 17, 2014 Permalink | Reply
    Tags: , , , , , NASA Insight, NASA JPL   

    From JPL: “Next NASA Mars Mission Reaches Milestone” 

    JPL

    November 17, 2014
    Media Contact
    Guy Webster
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-6278
    guy.webster@jpl.nasa.gov

    Dwayne Brown
    NASA Headquarters, Washington
    202-358-1726
    dwayne.c.brown@nasa.gov

    Gary Napier
    Lockheed Martin Space Systems, Denver
    303-971-4012
    gary.p.napier@lmco.com

    NASA’s InSight mission has begun the assembly, test and launch operations (ATLO) phase of its development, on track for a March 2016 launch to Mars.

    The lander, its aeroshell and cruise stage are being assembled by Lockheed Martin Space Systems, Denver.

    techs
    Technicians in a Lockheed Martin clean room near Denver prepare NASA’s InSight Mars lander for propulsion proof and leak testing on Oct. 31, 2014.

    “Reaching this stage that we call ATLO is a critical milestone,” said InSight Project Manager Tom Hoffman at NASA’s Jet Propulsion Laboratory, Pasadena, California. “This is a very satisfying point of the mission as we transition from many teams working on their individual elements to integrating these elements into a functioning system. The subsystems are coming from all over the globe, and the ATLO team works to integrate them into the flight vehicle. We will then move rapidly to rigorous testing when the spacecraft has been assembled, and then to the launch preparations.”

    NASA Insight
    NASA/InSight

    Over the next six months, technicians at Lockheed Martin will add subsystems such as avionics, power, telecomm, mechanisms, thermal systems and navigation systems onto the spacecraft. The propulsion system was installed earlier this year on the lander’s main structure.

    “The InSight mission is a mix of tried-and-true and new-and-exciting. The spacecraft has a lot of heritage from Phoenix and even back to the Viking landers, but the science has never been done before at Mars,” said Stu Spath, InSight program manager at Lockheed Martin Space Systems. “Physically, InSight looks a lot like the Phoenix lander we built, but most of the electronic components are similar to what is currently flying on the MAVEN spacecraft.”

    NASA Phoenix
    NASA/Phoenix

    NASA Viking 1
    NASA/Viking 1

    InSight stands for “Interior Exploration using Seismic Investigations, Geodesy and Heat Transport,” and it is more than a Mars mission. This NASA Discovery-class mission is a terrestrial planet explorer that will address one of the most fundamental issues of planetary and solar system science: understanding the processes that shaped the rocky planets of the inner solar system (including Earth) more than four billion years ago.

    To investigate the planet’s interior, the stationary lander will carry a robotic arm that will deploy surface and burrowing instruments contributed by France and Germany. The national space agencies of France and Germany — Centre National d’Etudes Spatiales (CNES) and Deutsches Zentrum für Luft- und Raumfahrt (DLR), respectively — are partnering with NASA by providing InSight’s two main science instruments.

    The Seismic Experiment for Interior Structure (SEIS) will be built by CNES in partnership with DLR and the space agencies of Switzerland and the United Kingdom. It will measure waves of ground motion carried through the interior of the planet, from “marsquakes” and meteor impacts. The Heat Flow and Physical Properties Package, from DLR, will measure heat coming toward the surface from the planet’s interior.

    Guided by images of the surroundings taken by the lander, InSight’s robotic arm will place the seismometer on the surface and then place a protective covering over it to minimize effects of wind and temperature on the sensitive instrument. The arm will also put the heat-flow probe in position to hammer itself into the ground to a depth of 3 to 5 yards, or meters.

    Another experiment will use the radio link between InSight and NASA’s Deep Space Network antennas on Earth to measure precisely a wobble in Mars’ rotation that could reveal whether the planet has a molten or solid core. Wind and temperature sensors from Spain’s Centro de Astrobiologia and a pressure sensor will monitor weather at the landing site, and a magnetometer will measure magnetic disturbances caused by the Martian ionosphere.

    The InSight mission is led by JPL’s Bruce Banerdt. It is part of NASA’s Discovery Program of competitively selected, cost-capped missions. Its international science team combines researchers from Austria, Belgium, Canada, France, Germany, Japan, Poland, Spain, Switzerland, the United Kingdom and the United States. JPL, a division of the California Institute of Technology, Pasadena, manages InSight for NASA’s Science Mission Directorate, Washington. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Discovery Program. Lockheed Martin is building the lander and other parts of the spacecraft near Denver.

    For more about InSight, visit:

    http://insight.jpl.nasa.gov

    For more information about Mars missions:

    http://www.nasa.gov/mars

    For more about the Discovery Program, visit:

    http://discovery.nasa.gov

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 5:21 pm on November 14, 2014 Permalink | Reply
    Tags: , , , , , NASA JPL   

    From JPL: “New Map Shows Frequency of Small Asteroid Impacts, Provides Clues on Larger Asteroid Population” 

    JPL

    November 14, 2014
    Media Contact
    DC Agle
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-393-9011
    agle@jpl.nasa.gov

    Dwayne Brown
    NASA Headquarters, Washington
    202-358-1726
    dwayne.c.brown@nasa.gov

    bolide
    This diagram maps the data gathered from 1994-2013 on small asteroids impacting Earth’s atmosphere to create very bright meteors, technically called “bolides” and commonly referred to as “fireballs”. Sizes of red dots (daytime impacts) and blue dots (nighttime impacts) are proportional to the optical radiated energy of impacts measured in billions of Joules (GJ) of energy, and show the location of impacts from objects about 1 meter (3 feet) to almost 20 meters (60 feet) in size. Image Credit: Planetary Science

    A map released today by NASA’s Near Earth Object (NEO) Program reveals that small asteroids frequently enter and disintegrate in the Earth’s atmosphere with random distribution around the globe. Released to the scientific community, the map visualizes data gathered by U.S. government sensors from 1994 to 2013. The data indicate that Earth’s atmosphere was impacted by small asteroids, resulting in a bolide (or fireball), on 556 separate occasions in a 20-year period. Almost all asteroids of this size disintegrate in the atmosphere and are usually harmless. The notable exception was the Chelyabinsk event which was the largest asteroid to hit Earth in this period. The new data could help scientists better refine estimates of the distribution of the sizes of NEOs including larger ones that could pose a danger to Earth.

    Finding and characterizing hazardous asteroids to protect our home planet is a high priority for NASA. It is one of the reasons NASA has increased by a factor of 10 investments in asteroid detection, characterization and mitigation activities over the last five years. In addition, NASA has aggressively developed strategies and plans with its partners in the U.S. and abroad to detect, track and characterize NEOs. These activities also will help identify NEOs that might pose a risk of Earth impact, and further help inform developing options for planetary defense.

    The public can help participate in the hunt for potentially hazardous Near Earth Objects through the Asteroid Grand Challenge, which aims to create a plan to find all asteroid threats to human populations and know what to do about them. NASA is also pursuing an Asteroid Redirect Mission (ARM) which will identify, redirect and send astronauts to explore an asteroid. Among its many exploration goals, the mission could demonstrate basic planetary defense techniques for asteroid deflection.

    For more information about the map and data, go to:

    http://neo.jpl.nasa.gov

    For details about ARM, and the Asteroid Grand Challenge, visit:

    http://www.nasa.gov/asteroidinitiative

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 11:15 am on October 31, 2014 Permalink | Reply
    Tags: , , , , NASA JPL   

    From NASA/JPL: “Specular Spectacular” 

    JPL

    October 30, 2014
    No Writer Credit

    This near-infrared, color mosaic from NASA’s Cassini spacecraft shows the sun glinting off of Titan’s north polar seas. While Cassini has captured, separately, views of the polar seas and the sun glinting off of them in the past, this is the first time both have been seen together in the same view.

    titan
    Image credit: NASA/JPL-Caltech/University of Arizona/University of Idaho

    NASA Cassini Spacecraft
    NASA/Cassini

    The sunglint, also called a specular reflection, is the bright area near the 11 o’clock position at upper left. This mirror-like reflection, known as the specular point, is in the south of Titan’s largest sea, http://en.wikipedia.org/wiki/Kraken_Mare, just north of an island archipelago separating two separate parts of the sea.

    This particular sunglint was so bright as to saturate the detector of Cassini’s Visual and Infrared Mapping Spectrometer (VIMS) instrument, which captures the view. It is also the sunglint seen with the highest observation elevation so far — the sun was a full 40 degrees above the horizon as seen from Kraken Mare at this time — much higher than the 22 degrees seen in PIA18433. Because it was so bright, this glint was visible through the haze at much lower wavelengths than before, down to 1.3 microns.

    The southern portion of Kraken Mare (the area surrounding the specular feature toward upper left) displays a “bathtub ring” — a bright margin of evaporate deposits — which indicates that the sea was larger at some point in the past and has become smaller due to evaporation. The deposits are material left behind after the methane & ethane liquid evaporates, somewhat akin to the saline crust on a salt flat.

    The highest resolution data from this flyby — the area seen immediately to the right of the sunglint — cover the labyrinth of channels that connect Kraken Mare to another large sea, Ligeia Mare. Ligeia Mare itself is partially covered in its northern reaches by a bright, arrow-shaped complex of clouds. The clouds are made of liquid methane droplets, and could be actively refilling the lakes with rainfall.

    The view was acquired during Cassini’s August 21, 2014, flyby of Titan, also referred to as “T104″ by the Cassini team.

    The view contains real color information, although it is not the natural color the human eye would see. Here, red in the image corresponds to 5.0 microns, green to 2.0 microns, and blue to 1.3 microns. These wavelengths correspond to atmospheric windows through which Titan’s surface is visible.

    The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. JPL, a division of the California Institute of Technology, Pasadena, manages the mission for NASA’s Science Mission Directorate in Washington. The VIMS team is based at the University of Arizona in Tucson.

    More information about Cassini is available at http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov.

    See the full article, with other material, here.

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 2:22 pm on October 15, 2014 Permalink | Reply
    Tags: , , , NASA JPL   

    From JPL at Caltech: “Slow-Growing Galaxies Offer Window to Early Universe” 

    JPL

    October 15, 2014
    Whitney Clavin
    818-354-4673
    Jet Propulsion Laboratory, Pasadena, Calif.
    whitney.clavin@jpl.nasa.gov

    What makes one rose bush blossom with flowers, while another remains barren? Astronomers ask a similar question of galaxies, wondering how some flourish with star formation and others barely bloom.

    A new study published in the Oct. 16 issue of the journal Nature addresses this question by making some of the most accurate measurements yet of the meager rates at which small, sluggish galaxies create stars. The report uses data from the European Space Agency’s Herschel mission, in which NASA is a partner, and NASA’s Spitzer Space Telescope and Galaxy Evolution Explorer (GALEX).

    ESA Herschel
    ESA Herschel schematic
    ESA/Herschel

    NASA Spitzer Telescope
    NASA Spitzer schematic
    NASA/Spitzer

    NASA Galex telescope
    NASA/GALEX

    The findings are helping researchers figure out how the very first stars in our universe sprouted. Like the stars examined in the new study, the first-ever stars from billions of years ago took root in poor conditions. Growing stars in the early cosmos is like trying to germinate flower seeds in a bed of dry, poor soil. Back then, the universe hadn’t had time yet to make “heavy metals,” elements heavier than hydrogen and helium.

    “The metals in space help act in some ways like a fertilizer to help stars grow,” said George Helou, an author of the new study and director of NASA’s Infrared Processing and Analysis Center (IPAC) at the California Institute of Technology, Pasadena. The lead author of the study is Yong Shi, who performed some of the research at IPAC before moving to Nanjing University in China.

    The two slow-going galaxies in the study, called Sextans A and ESO 146-G14, lack in heavy metals, just like our young and remote cosmos, only they are a lot closer to us and easier to see. Sextans A is located about 4,500 light-years from Earth, and ESO 146-G14 is more than 70,000 light-years away.

    sa
    Sextans A Dwarf galaxy

    These smaller galaxies are late bloomers. They managed to travel through history while remaining pristine, and never bulked up in heavy metals (heavy metals not only help stars to form, but are also created themselves by stars).

    “The metal-poor galaxies are like islands left over from the early universe,” said Helou. “Because they are relatively close to us, they are especially valuable windows to the past.”

    Studying star formation in poor growing environments such as these is tricky. The galaxies, though nearby, are still faint and hard to see. Shi and his international team wrangled the problem with a multi-wavelength approach. The Herschel data, captured at the longest infrared wavelengths of light, let the researchers see the cool dust in which stars are buried. The dust serves as a proxy for the total amount of gas in the region — the basic ingredient of stars. To other telescopes, this dust is cold and invisible. Herschel, on the other hand, can pick up its feeble glow.

    Supporting radio-wavelength measurements of some of the gas in the galaxies came from the National Radio Astronomy Observatory’s Jansky Very Large Array observatory near Socorro, New Mexico, and the Australia Telescope Compact Array observatory, near Narrabri.

    NRAO VLA
    NRAO VLA

    Australian Telescope Compact Array
    Australia Telescope Compact Array observatory

    Meanwhile, archived data from Spitzer and GALEX were used to look at the rate of star formation. Spitzer sees shorter-wavelength infrared light, which comes from dust that is warmed by new stars. GALEX images capture ultraviolet light from the shining stars themselves.

    Putting all these pieces together enabled the astronomers to determine that the galaxies are plodding along, creating stars at rates 10 times lower than their normal counterparts.

    “Star formation is very inefficient in these environments,” said Shi. “Extremely metal-poor nearby galaxies are the best way to know what went on billions of years ago.”

    The heavy metals in present-day galaxies help star formation to flourish through cooling effects. For a star to form, a ball of gas needs to fall in on itself with the help of its own gravity. Ultimately, the material has to become dense enough for atoms to fuse and ignite, creating starlight. But as this cloud collapses, it heats up and puffs back out again, counteracting the process. Heavy metals cool everything down by radiating away the heat, enabling the cloud to condense into a star.

    How stars in the early universe were able to do this without the cooling benefits of heavy metals remains unknown.

    Studies like this shine light on the very first stellar buds, giving us a glimpse into the roots of our cosmic history.

    NASA’s Jet Propulsion Laboratory, Pasadena, California, manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate, Washington. The GALEX mission, which ended in 2013, was also managed by JPL for NASA and led by Caltech. JPL served as the NASA Herschel Project Office for the European Space Agency’s Herschel mission, which also ended in 2013.

    Data from Spitzer and Herschel are accessible through the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. Caltech manages JPL for NASA.

    See the full article here.

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 378 other followers

%d bloggers like this: