Tagged: Lead Ions Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:11 pm on September 14, 2012 Permalink | Reply
    Tags: , , , Lead Ions, , , ,   

    From Symmetry Magazine: “First proton-lead collision test at the LHC successful” 

    For the first time, scientists at the Large Hadron Collider have collided protons with lead ions, a feat that will give them insight into the quark-gluon plasma.
    image

    September 14, 2012
    Signe Brewster

    “For most of the year, two beams of protons run the collision course around the Large Hadron Collider. Scientists take a short break from protons in winter to collide much heavier lead ions.

    In a test on Thursday, scientists collided the two types of particles together for the first time. The feat will allow physicists to better understand the conditions of the universe just after the big bang.

    LHC scientists collide lead ions to create quark-gluon plasma [qgp], a hot, dense soup of quarks that are free-floating instead of being bound into particles. They study the plasma’s properties by examining the high-energy particles that emerge from collisions that produce it.

    Early next year scientists will smash protons with lead ions to better understand results obtained from the lead-lead collisions. Proton-lead collisions are similar to lead-lead collisions, but they have lower energy and therefore do not produce quark-gluon plasma. Colliding protons with lead ions will help scientists determine which effects of the collisions come from the presence of lead ions and which ones come from the presence of the plasma.

    ‘We are all very excited that it worked so quickly,’ accelerator physicist John Jowett said. ‘This is something very new for the LHC.’

    Colliding protons with lead ions was a new challenge for the CERN teams. The two LHC beam pipes are usually filled with beams composed of identical types of particles, which are accelerated to an identical energy before colliding. Colliding lead ions with protons is unusual because lead ions have very different mass and charge than protons. Both are subject to the forces of the same magnets that surround the LHC beam pipes, so their energies and frequencies of revolution around the ring are unequal. To correct the differences, the radiofrequency cavities the beams pass through are tuned to different frequencies for each of the beams.”

    See the full article here. And, we look forward to more and greater results.


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 10:03 am on November 26, 2010 Permalink | Reply
    Tags: , , , , , , Lead Ions,   

    From CERN: “LHC experiments bring new insight into primordial universe” 

    “Geneva, 26 November 2010. After less than three weeks of heavy-ion running, the three experiments studying lead ion collisions at the LHC have already brought new insight into matter as it would have existed in the very first instants of the Universe’s life. The ALICE experiment, which is optimised for the study of heavy ions, published two papers just a few days after the start of lead-ion running. Now, the first direct observation of a phenomenon known as jet quenching has been made by both the ATLAS and CMS collaborations. This result is reported in a paper from the ATLAS collaboration accepted for publication yesterday in the scientific journal Physical Review Letters. A CMS paper will follow shortly, and results from all of the experiments will be presented at a seminar on Thursday 2 December at CERN1. Data taking with ions continues to 6 December.”

    i1
    From ALICE

    i2
    From ATLAS

    i3
    From CMS

    Event displays of heavy ion collisions from ALICE, ATLAS and CMS. The ATLAS and CMS images show jet quenching.

    See the full article here.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 378 other followers

%d bloggers like this: