Tagged: Keck Observatory Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:24 pm on November 19, 2014 Permalink | Reply
    Tags: , , , , Keck Observatory   

    From Keck: “Evicted? Possible Black Hole Found 2,600 Light Years from Home” 

    Keck Observatory

    Keck Observatory

    Keck Observatory

    November 19, 2014
    Steve Jefferson
    Communications Officer
    W. M. Keck Observatory
    808.881.3827
    sjefferson@keck.hawaii.edu

    An international team of researchers analyzing decades of observations from many facilities — including the W. M. Keck Observatory on Mauna Kea, the Pan-STARRS1 telescope on Haleakala and NASA’s Swift satellite — has discovered what appears to be a black hole booted from it’s host galaxy. The team was led by Michael Koss, who was a postdoctoral fellow at the Institute for Astronomy (IfA) at the University of Hawaii at Manoa during most of the time the study was ongoing. The study will be published in the Nov. 21 edition of Monthly Notices of the Royal Astronomical Society.

    ssd
    Credit: Credit: W. M. Keck Observatory/M. Koss (ETH Zurich) et al.
    Using the Keck II telescope in Hawaii, researchers obtained high-resolution images of Markarian 177 and SDSS1133 using a near-infrared filter. Twin bright spots in the galaxy’s central region are consistent with recent star formation, a disturbance that hints this galaxy may have merged with another.

    Pann-STARSR1 Telescope
    Pann-STARRS1 interior
    Pan-STARRS1 telescope

    NASA SWIFT Telescope
    NASA/Swift

    The mystery object is part of the dwarf galaxy Markarian 177, located in the bowl of the Big Dipper, a well-known star pattern within the constellation Ursa Major. Although supermassive black holes usually occupy galactic centers, SDSS1133 is located at least 2,600 light-years from its host galaxy’s core. The team was able to detect it in astronomical surveys dating back more than 60 years.

    In June 2013, the researchers obtained high-resolution near-infrared images of the object using the 10-meter Keck II telescope at Keck Observatory. “When we analyzed the Keck data, we found the emitting region of SDSS1133 is less than 40 light-years across, and that the center of Markarian 177 shows evidence of intense star formation and other features indicating a recent disturbance that matched what we expected for a recoiling black hole,” said Chao-Ling Hung, a UH Manoa graduate student performing the analysis of the Keck Observatory imaging in the study.

    “We suspect we’re seeing the aftermath of a merger of two small galaxies and their central black holes,” said co-author Laura Blecha, an Einstein Fellow in the University of Maryland’s Department of Astronomy and a leading theorist in simulating recoils, or “kicks,” in merging black holes. “Astronomers searching for recoiling black holes have been unable to confirm a detection, so finding even one of these sources would be a major discovery.”

    The collision and merger of two galaxies disrupts their shapes and results in new episodes of star formation. If each galaxy possesses a central supermassive black hole, they will form a bound binary pair at the center of the merged galaxy before ultimately coalescing themselves. “This study was extremely interesting for our research group because we typically study star formation and AGN activity that happens during the galaxy merger, but now we are looking for recoiling black holes after the merger,” said David Sanders, an IfA astronomer involved in the study.

    Merging black holes release a large amount of energy in the form of gravitational radiation, as explained by [Albert]Einstein’s theory of gravity. Waves in the fabric of space-time ripple outward in all directions from accelerating masses. If both black holes have equal masses and spins, their merger emits gravitational waves uniformly in all directions. More likely, masses and spins will be different, leading to lopsided gravitational wave emission that launches the black hole in the opposite direction.

    The kick may be strong enough to hurl the black hole entirely out of its home galaxy, fating it to forever drift through intergalactic space. More typically, a kick will send the object into an elongated orbit. Despite its relocation, the ejected black hole will retain any hot gas trapped around it and continue to shine until all of the gas is consumed as it moves along its new path.

    While the object’s unusual source of light in a galaxy some 90 million light-years away, its properties make it a good match for a supermassive black hole ejected from its home galaxy, astronomers can’t yet rule out an alternative possibility. The source, called SDSS1133, may be the remnant of a massive star that underwent a record period of eruptions before destroying itself in a supernova explosion.

    “With the data we have in hand, we can’t yet distinguish between these two scenarios,” Koss said, now an astronomer at ETH Zurich, the Swiss Federal Institute of Technology. “But, one exciting discovery made with NASA’s Swift is that the emission of ultraviolet light of SDSS1133 hasn’t changed for a decade, which is not something typically seen in a young supernova remnant.”

    To analyze the object in greater detail, the team is planning ultraviolet observations with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope in October 2015. “We found in the Pan-STARRS1 imaging that SDSS1133 has been getting significantly brighter at visible wavelengths over the last 6 months and that bolstered the black hole interpretation and our case to study SDSS1133 now with HST,” said Yanxia Li a UH Manoa graduate student involved in the analysis of the Pan-STARRS1 imaging in the study.

    NASA Hubble Cosmic Origins Spectograph
    COS on Hubble

    If SDSS1133 isn’t a black hole, then it must have been a very unusual type of star known as a Luminous Blue Variable (LBV). These stars undergo episodic eruptions that cast large amounts of mass into space long before they explode. Interpreted in this way, SDSS1133 would represent the longest period of LBV eruptions ever observed, followed by a terminal supernova explosion whose light reached Earth in 2001.

    The nearest analog in our galaxy is the massive binary system Eta Carinae, which includes an LBV containing about 90 times the sun’s mass. Between 1838 and 1845, the system underwent an outburst that ejected at least 10 solar masses and made it the second-brightest star in the sky. It then followed up with a smaller eruption in the 1890s.

    ec
    A huge, billowing pair of gas and dust clouds are captured in this stunning NASA Hubble Space Telescope image of the supermassive star Eta Carinae. Eta Carinae was observed by Hubble in September 1995 with the Wide Field and Planetary Camera 2 (WFPC2). Images taken through red and near-ultraviolet filters were subsequently combined to produce the color image shown. A sequence of eight exposures was necessary to cover the object’s huge dynamic range: the outer ejecta blobs are 100,000 times fainter than the brilliant central star. Eta Carinae suffered a giant outburst about 160 years ago, when it became one of the brightest stars in the southern sky. Though the star released as much visible light as a supernova explosion, it survived the outburst. The explosion produced two lobes and a large, thin equatorial disk, all moving outward at about 1 million kilometers per hour.
    Date 10 June 1996
    Author Nathan Smith (University of California, Berkeley), and NASA

    NASA Hubble WFPC2
    WFPC2 (no longer in service)

    For an LBV to explain SDSS1133, the star must have been in nearly continual eruption from at least 1950 to 2001, when it reached peak brightness and went supernova. The spatial resolution and sensitivity of telescopes prior to 1950 were insufficient to detect the source. But if this was an LBV eruption, the current record already shows it to be the longest and most persistent one ever observed. An interaction between the ejected gas and the explosion’s blast wave could explain the object’s steady brightness in the ultraviolet.

    Whether it’s a rogue supermassive black hole or the closing act of a rare star, it seems astronomers have never seen the likes of SDSS1133 before.

    NIRC2 (the Near-Infrared Camera, second generation) works in combination with the Keck II adaptive optics system to obtain very sharp images at near-infrared wavelengths, achieving spatial resolutions comparable to or better than those achieved by the Hubble Space Telescope at optical wavelengths. NIRC2 is probably best known for helping to provide definitive proof of a central massive black hole at the center of our galaxy. Astronomers also use NIRC2 to map surface features of solar system bodies, detect planets orbiting other stars, and study detailed morphology of distant galaxies.

    Keck NIRC2
    NIRC2

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.
    Keck UCal

    Keck NASA

    Keck Caltech

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 3:02 pm on November 12, 2014 Permalink | Reply
    Tags: , , , , Keck Observatory   

    From UCO KECK: “Astronomers Thrilled by Extreme Storms on Uranus” 

    Keck Observatory

    Keck Observatory

    UCO Keck Observatory

    November 12, 2014
    SCIENCE CONTACTS
    Imke de Pater
    imke@berkeley.edu

    Larry Sromovsky
    larry.sromovsky@ssec.wisc.edu

    Heidi Hammel
    (203) 321-6929
    hbhammel@aura-astronomy.org

    Marc Delcroix
    delcroix.marc@free.fr

    MEDIA CONTACT:
    Steve Jefferson
    Communications Officer
    W. M. Keck Observatory
    808.881.3827
    sjefferson@keck.hawaii.edu

    The normally bland face of Uranus has become increasingly stormy, with enormous cloud systems so bright that for the first time ever, amateur astronomers are able to see details in the planet’s hazy blue-green atmosphere.

    “The weather on Uranus is incredibly active,” said Imke de Pater, professor and chair of astronomy at the University of California, Berkeley, and leader of the team that first noticed the activity when observing the planet with adaptive optics on the W. M. Keck Observatory in Hawaii.

    “This type of activity would have been expected in 2007, when Uranus’s once every 42-year equinox occurred and the sun shined directly on the equator,” noted co-investigator Heidi Hammel of the Association of Universities for Research in Astronomy. “But we predicted that such activity would have died down by now. Why we see these incredible storms now is beyond anybody’s guess.”

    In all, de Pater, Hammel and their team detected eight large storms on Uranus’s northern hemisphere when observing the planet with the Keck Observatory on August 5 and 6. One was the brightest storm ever seen on Uranus at 2.2 microns, a wavelength that senses clouds just below the tropopause, where the pressure ranges from about 300 to 500 mbar, or half the pressure at Earth’s surface. The storm accounted for 30 percent of all light reflected by the rest of the planet at this wavelength.

    ur
    Infrared images of Uranus (1.6 and 2.2 microns) obtained on Aug. 6, 2014, with adaptive optics on the 10-meter Keck II telescope. The white spot is an extremely large storm that was brighter than any feature ever recorded on the planet in the 2.2 micron band. The cloud rotating into view at the lower-right limb grew into the large storm that was seen by amateur astronomers at visible wavelengths. Credit: Imke de Pater (UC Berkeley) & W. M. Keck Observatory images.

    gif
    Animation showing the movement of the bright spot as Uranus rotated over a two hour period on Oct. 4, 2014. The images were taken at the Pic du Midi telescope in the French Pyrénées.
    Courtesy of Marc Delcroix and F. Colas (S2P).

    3
    Optical images of Uranus on Sept. 19 and Oct. 2, showing the dramatic appearance of a bright storm on a planet that normally displays only a diffuse bright polar region.
    Credit: Courtesy of Anthony Wesley, Murrumbateman, Australia

    When amateur astronomers heard about the activity, they turned their telescopes on the planet and were amazed to see a bright blotch on the surface of a normally boring blue dot.

    ‘I got it!’

    French amateur astronomer Marc Delcroix processed the amateur images and confirmed the discovery of a bright spot on an image by French amateur Régis De-Bénedictis, then in others taken by fellow amateurs in September and October. He had his own chance on Oct. 3 and 4 to photograph it with the Pic du Midi one-meter telescope, where on the second night, “I caught the feature when it was transiting, and I thought, ‘Yes, I got it!’” said Delcroix.

    “I was thrilled to see such activity on Uranus. Getting details on Mars, Jupiter or Saturn is now routine, but seeing details on Uranus and Neptune are the new frontiers for us amateurs and I did not want to miss that,” said Delcroix, who works for an auto parts supplier in Toulouse and has been observing the skies – Jupiter in particular – with his backyard telescope since 2006 and, since 2012, occasionally with the Pic du Midi telescope. “I was so happy to confirm myself these first amateur images on this bright storm on Uranus, feeling I was living a very special moment for planetary amateur astronomy.”Interestingly, the extremely bright storm seen by the 10-meter Keck II telescope in the near infrared is not the one seen by the amateurs, which is much deeper in the atmosphere than the one that initially caused all the excitement. De Pater’s colleague Larry Sromovsky, a planetary scientist at the University of Wisconsin, Madison, identified the amateur spot as one of the few features on the Keck Observatory images from August 5 that was only seen at 1.6 microns, and not at 2.2 microns. The 1.6 micron light is emitted from deeper in the atmosphere, which means that this feature is below the uppermost cloud layer of methane-ice in Uranus’s atmosphere.

    “The colors and morphology of this cloud complex suggests that the storm may be tied to a vortex in the deeper atmosphere similar to two large cloud complexes seen during the equinox,” Sromovsky said

    Such vortices could be anchored much deeper in the atmosphere and extend over large vertical distances, as inferred from similar vortices on Jupiter, including its Great Red Spot.

    An expanded team of astronomers led by Kunio M. Sayanagi, an Assistant Professor at Hampton University in Virginia, leveraged the amateur observations to activate a “Target of Opportunity” proposal on the Hubble Space Telescope, which imaged the entire planet on Oct. 14. Observing at a variety of wavelengths, HST revealed multiple storm components extending over a distance of more than 9,000 kilometers (5,760 miles) and clouds at a variety of altitudes.

    NASA Hubble Telescope
    NASA Hubble schematic
    NASA/ESA Hubble

    De Pater, Sromovsky, Hammel and Pat Fry of the University of Wisconsin will report the details of their observations on Nov. 12 at a meeting of the American Astronomical Society’s Division of Planetary Sciences in Tucson, Ariz.

    Ice giant

    Uranus is an ice giant, about four times the diameter of Earth, with an atmosphere of hydrogen and helium, with just a bit of methane to give it a blue tint. Because it is so distant – 19 times farther from the sun than Earth – astronomers were able to see little detail on its surface until adaptive optics on both Keck Observatory telescopes revealed features much like those on Jupiter.

    De Pater and her colleagues have been following Uranus for more than a decade, charting the weather on the planet, including bands of circulating clouds, massive swirling storms and convective features at its north pole. Bright clouds are probably caused by gases such as methane rising in the atmosphere and condensing into highly reflective clouds of methane ice.

    Because Uranus has no internal source of heat, its atmospheric activity was thought to be driven solely by sunlight, which is now weak in the northern hemisphere. Hence astronomers were surprised when these observations showed such intense activity.

    Observations taken with the Keck II telescope by Christoph Baranec, an Assistant Professor at the University of Hawaii on Manoa, revealed that the storm was still active, but had a different morphology and possibly reduced intensity.

    “If indeed these features are high-altitude clouds generated by flow perturbations associated with a deeper vortex system, such drastic fluctuations in intensity would indeed be possible,” Sromovsky added.

    “These unexpected observations remind us keenly of how little we understand about atmospheric dynamics in outer planet atmospheres,” the authors wrote in their paper.

    NIRC2 (the Near-Infrared Camera, second generation) works in combination with the Keck II adaptive optics system to obtain very sharp images at near-infrared wavelengths, achieving spatial resolutions comparable to or better than those achieved by the Hubble Space Telescope at optical wavelengths. NIRC2 is probably best known for helping to provide definitive proof of a central massive black hole at the center of our galaxy. Astronomers also use NIRC2 to map surface features of solar system bodies, detect planets orbiting other stars, and study detailed morphology of distant galaxies.

    Keck NIRC2
    NIRC2

    See the full article here.

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.
    Keck UCal

    Keck NASA

    Keck Caltech

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 6:20 pm on November 3, 2014 Permalink | Reply
    Tags: , , , , Keck Observatory   

    From Keck: “Mysterious G2 Cloud Near Black Hole Identified” 

    Keck Observatory

    Keck Observatory

    Keck Observatory

    November 3, 2014
    Media Contact
    Steve Jefferson
    Communications Officer
    W. M. Keck Observatory
    808.881.3827
    sjefferson@keck.hawaii.edu

    The mystery about a thin, bizarre object in the center of the Milky Way headed toward our galaxy’s enormous black hole has been solved by UCLA astronomers using the W. M. Keck Observatory, home of the two largest telescopes on Earth. The scientists studied the object, known as G2, during its closest approach to the black hole this summer, and found the black hole did not dine on it. The research is published today in the journal Astrophysical Journal Letters.

    While some scientists believed the object was a cloud of hydrogen gas that would be torn apart in a fiery show, [Andrea]Ghez and her team proved it was much more interesting.

    “G2 survived and continues happily on its orbit; a gas cloud would not do that,” said Andrea Ghez, UCLA professor of physics and astronomy who holds the Lauren B. Leichtman and Arthur E. Levine Chair in Astrophysics, and directs the UCLA Galactic Center Group. “G2 was completely unaffected by the black hole; no fireworks.”

    Instead, the team has demonstrated it is a pair of binary stars that had been orbiting the black hole in tandem and merged together into an extremely large star, cloaked in gas and dust, and choreographed by the black hole’s powerful gravitational field.

    “G2 is not alone,” said Ghez, who uses Keck Observatory to study thousands of stars in the neighborhood of the supermassive black hole. “We’re seeing a new class of stars near the black hole, and as a consequence of the black hole.”

    Ghez and her colleagues — who include lead author Gunther Witzel, a UCLA postdoctoral scholar in Ghez’s research group, and Mark Morris, a UCLA professor of physics and astronomy — studied the event with both of the 10-meter telescopes at Keck Observatory.

    Keck Observatory employs a powerful technology called adaptive optics, which Ghez helped to pioneer, to correct the distorting effects of the Earth’s atmosphere in real time, and to reveal the region of space around the black hole. With adaptive optics, Ghez and her colleagues have revealed many surprises about the environments surrounding supermassive black holes, discovering, for example, young stars where none were expected and seeing a lack of old stars where many were anticipated.

    “The Keck Observatory has been the leader in adaptive optics for more than a decade and has enabled us to achieve tremendous progress in correcting the distorting effects of the Earth’s atmosphere using high–angular resolution imaging techniques,” Ghez said.

    The researchers wouldn’t have been able to arrive at their conclusions without the Keck’s advanced technology. “It is a result that in its precision was possible only with these incredible tools, the Keck Observatory’s 10-meter telescopes,” Witzel said.

    “We are seeing phenomena about black holes that you can’t watch anywhere else in the universe,” Ghez added. “We are starting to understand the physics of black holes in a way that has never been possible before, and is possible only at the center of the galaxy.”

    Massive stars in our galaxy, she noted, primarily come in pairs. When the two stars merge into one, the star expands for more than one million years “before it settles back down,” Ghez said. “This may be happening more than we thought; the stars at the center of the galaxy are massive and mostly binaries. It’s possible that many of the stars we’ve been watching and not understanding may be the end product of a merger that are calm now.”

    G2, in that explosive stage now, has been an object of fascination. “Its closest approach to the black hole was one of the most watched events in astronomy in my career,” Ghez said.

    G2 makes an unusual, 300-year elliptical orbit around the black hole and Ghez’s group calculated its closest approach occurred this summer — later than other astronomers believed —and they were in place at Keck Observatory to gather the data.

    Black holes, which form out of the collapse of matter, have such high density that nothing can escape their gravitational pull, not even light. They cannot be seen directly, but their influence on nearby stars is visible and provides a signature, said Ghez, a 2008 MacArthur Fellow.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes near the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectographs and world-leading laser guide star adaptive optics systems.

    NIRC2 (the Near-Infrared Camera, second generation) works in combination with the Keck II adaptive optics system to obtain very sharp images at near-infrared wavelengths, achieving spatial resolutions comparable to or better than those achieved by the Hubble Space Telescope at optical wavelengths. NIRC2 is probably best known for helping to provide definitive proof of a central massive black hole at the center of our galaxy. Astronomers also use NIRC2 to map surface features of solar system bodies, detect planets orbiting other stars, and study detailed morphology of distant galaxies.

    Keck NIRC2
    Keck’s NIRC2

    NASA Hubble Telescope
    NASA/ESA Hubble

    See the full article here.

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.
    Keck UCal

    Keck NASA

    Keck Caltech

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 2:06 pm on October 16, 2014 Permalink | Reply
    Tags: , , , , Keck Observatory, Max Planck Institute for Astronomy   

    From Keck: “Scientists Build First Map of Hidden Universe” 

    Keck Observatory

    Keck Observatory

    Keck Observatory

    October 15, 2014
    Khee-Gan Lee
    Max Planck Institute for Astronomy
    Heidelberg, Germany
    Phone: (+49|0) 6221 –528 467
    email: lee@mpia.de

    Joe Hennawi
    Max Planck Institute for Astronomy
    Heidelberg, Germany
    Phone: (+49|0) 6221 –528 263
    email: joe@mpia.de

    MEDIA CONTACTS:
    Steve Jefferson
    Communications Officer
    W. M. Keck Observatory
    Phone: (808)881-3827
    email: sjefferson@keck.hawaii.edu

    Dr. Markus Pössel
    Public Information Officer
    Max Planck Institute for Astronomy
    Heidelberg, Germany
    Phone: (+49|0) 6221 –528 261
    email: pr@mpia.de

    A team led by astronomers from the Max Planck Institute for Astronomy has created the first three-dimensional map of the ‘adolescent’ Universe, just 3 billion years after the Big Bang. This map, built from data collected from the W. M. Keck Observatory, is millions of light-years across and provides a tantalizing glimpse of large structures in the ‘cosmic web’ – the backbone of cosmic structure.

    map
    3D map of the cosmic web at a distance of 10.8 billion light years from Earth. The map was generated from imprints of hydrogen gas observed in the spectrum of 24 background galaxies, which are located behind the volume being mapped. This is the first time that large-scale structures in such a distant part of the Universe have been mapped directly. The coloring represents the density of hydrogen gas tracing the cosmic web, with brighter colors representing higher density. Credit: Casey Stark (UC Berkeley) and Khee-Gan Lee (MPIA)

    more

    On the largest scales, matter in the Universe is arranged in a vast network of filamentary structures known as the ‘cosmic web’, its tangled strands spanning hundreds of millions of light-years. Dark matter, which emits no light, forms the backbone of this web, which is also suffused with primordial hydrogen gas left over from the Big Bang. Galaxies like our own Milky Way are embedded inside this web, but fill only a tiny fraction of its volume.

    Now a team of astronomers led by Khee-Gan Lee, a post-doc at the Max Planck Institute for Astronomy, has created a map of hydrogen absorption revealing a three-dimensional section of the universe 11 billions light years away – the first time the cosmic web has been mapped at such a vast distance. Since observing to such immense distances is also looking back in time, the map reveals the early stages of cosmic structure formation when the Universe was only a quarter of its current age, during an era when the galaxies were undergoing a major ‘growth spurt’.

    The map was created by using faint background galaxies as light sources, against which gas could be seen by the characteristic absorption features of hydrogen. The wavelengths of each hydrogen feature showed the presence of gas at a specific distance from us. Combining all of the measurements across the entire field of view allowed the team a tantalizing glimpse of giant filamentary structures extending across millions of light-years, and paves the way for more extensive studies that will reveal not only the structure of the cosmic web, but also details of its function – the ways that pristine gas is funneled along the web into galaxies, providing the raw material for the formation of galaxies, stars, and planets.

    Using the light from faint background galaxies for this purpose had been thought impossible with current telescopes – until Lee carried out calculations that suggested otherwise. To ensure success, Lee and his colleagues obtained observing time at Keck Observatory, home of the two largest and most scientifically productive telescopes in the world.

    Although bad weather limited the astronomers to observing for only 4 hours, the data they collected with the LRIS instrument was completely unprecedented. “We were pretty disappointed as the weather was terrible and we only managed to collect a few hours of good data. But judging by the data quality as it came off the telescope, it was clear to me that the experiment was going to work,” said Max Plank’s Joseph Hennawi, who was part of the observing team.

    Keck LRIS
    Keck’s LRIS

    “The data were obtained using the LRIS spectrograph on the Keck I telescope,” Lee said. “With its gargantuan 10m-diameter mirror, this telescope effectively collected enough light from our targeted galaxies that are more than 15 billion times fainter than the faintest stars visible to the naked eye. Since we were measuring the dimming of blue light from these distant galaxies caused by the foreground gas, the thin atmosphere at the summit of Mauna Kea allowed more of this blue light to reach the telescope and be measured by the highly sensitive detectors of the LRIS spectrograph. The data we collected would have taken at least several times longer to obtain on any other telescope.”

    Their absorption measurements using 24 faint background galaxies provided sufficient coverage of a small patch of the sky to be combined into a 3D map of the foreground cosmic web. A crucial element was the computer algorithm used to create the 3D map: due to the large amount of data, a naïve implementation of the map-making procedure would require an inordinate amount of computing time. Fortunately, team members Casey Stark and Martin White (UC Berkeley and Lawrence Berkeley National Lab) devised a new fast algorithm that could create the map within minutes. “We realized we could simplify the computations by tailoring it to this particular problem, and thus use much less memory. A calculation that previously required a supercomputer now runs on a laptop”, says Stark.

    The resulting map of hydrogen absorption reveals a three-dimensional section of the universe 11 billions light years away – this is first time the cosmic web has been mapped at such a vast distance. Since observing to such immense distances is also looking back in time, the map reveals the early stages of cosmic structure formation when the Universe was only a quarter of its current age, during an era when the galaxies were undergoing a major ‘growth spurt’. The map provides a tantalizing glimpse of giant filamentary structures extending across millions of light-years, and paves the way for more extensive studies that will reveal not only the structure of the cosmic web, but also details of its function – the ways that pristine gas is funneled along the web into galaxies, providing the raw material for the formation of galaxies, stars, and planets.

    The Low Resolution Imaging Spectrometer (LRIS) is a very versatile visible-wavelength imaging and spectroscopy instrument commissioned in 1993 and operating at the Cassegrain focus of Keck I. Since it has been commissioned it has seen two major upgrades to further enhance its capabilities: addition of a second, blue arm optimized for shorter wavelengths of light; and the installation of detectors that are much more sensitive at the longest (red) wavelengths. Each arm is optimized for the wavelengths it covers. This large range of wavelength coverage, combined with the instrument’s high sensitivity, allows the study of everything from comets (which have interesting features in the ultraviolet part of the spectrum), to the blue light from star formation, to the red light of very distant objects. LRIS also records the spectra of up to 50 objects simultaneously, especially useful for studies of clusters of galaxies in the most distant reaches, and earliest times, of the universe.

    See the full article here.

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.
    Keck UCal

    Keck NASA

    Keck Caltech

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 2:57 pm on August 4, 2014 Permalink | Reply
    Tags: , , , , Keck Observatory   

    From Keck: “Keck, Gemini Observatories Reveal Massive Eruptions on Io” 

    Keck Observatory

    Keck Observatory

    Keck Observatory

    August 4, 2014
    Media Contact:

    Steve Jefferson
    Communications Officer
    W. M. Keck Observatory
    808-881-3827
    sjefferson@keck.hawaii.edu

    Science Contacts:

    Imke de Pater
    510-643-7673
    mke@berkeley.edu

    Ashley Davies
    818-393-1775
    ashley.davies@jpl.nasa.gov

    Katherine de Kleer
    kdekleer@astro.berkeley.edu

    Three massive volcanic eruptions occurred on Jupiter’s moon Io within a two-week period last August, leading astronomers to speculate that these presumed rare “outbursts,” which can send material hundreds of miles above the surface, might be much more common than astronomers thought. The observations were made using the W. M. Keck Observatory and Gemini Observatory, both near the summit of Mauna Kea, Hawaii.

    Gemini North telescope
    Gemini North

    mess
    mages of Io obtained at different infrared wavelengths (in microns, μm, or millionths of a meter) with the W. M. Keck Observatory’s 10-meter Keck II telescope on Aug. 15, 2013 (a-c) and the Gemini North telescope on Aug. 29, 2013 (d). The bar on the right of each image indicates the intensity of the infrared emission. Note that emissions from the large volcanic outbursts on Aug. 15 at Rarog and Heno Paterae have substantially faded by Aug. 29. A second bright spot is visible to the north of the Rarog and Heno eruptions in c and to the west of the outburst in d. This hot spot was identified as Loki Patera, a lava lake that appeared to be particularly active at the same time. An even brighter outburst is seen to the lower right in panel (d), labeled “201308C” and is one of the most powerful outbursts ever seen on Io. Credit: Imke de Pater and Katherine de Kleer, UC Berkeley.

    “We typically expect one huge outburst every one or two years, and they’re usually not this bright,” said Imke de Pater, professor and chair of astronomy at the University of California, Berkeley, and lead author of one of two papers describing the eruptions. “Here we had three extremely bright outbursts, which suggest that if we looked more frequently we might see many more of them on Io.”

    Io, the innermost of Jupiter’s four large “Galilean” moons, is about 2,300 miles across, and, aside from Earth, is the only known place in the solar system with volcanoes erupting extremely hot lava like that seen on Earth. Because of Io’s low gravity, large volcanic eruptions produce an umbrella of debris that rises high into space.

    De Pater’s long-time colleague and coauthor Ashley Davies, a volcanologist with NASA’s Jet Propulsion Laboratory at the California Institute of Technology in Pasadena, Calif., said that the recent eruptions resemble past events that spewed tens of cubic miles of lava over hundreds of square miles in a short period of time.

    “These new events are in a relatively rare class of eruptions on Io because of their size and astonishingly high thermal emission,” he said. “The amount of energy being emitted by these eruptions implies lava fountains gushing out of fissures at a very large volume per second, forming lava flows that quickly spread over the surface of Io.”

    All three events, including the largest, most powerful eruption of the trio on 29 Aug. 2013, were likely characterized by “curtains of fire,” as lava blasted out of fissures perhaps several miles long.

    The papers, one with lead author Katherine de Kleer, a UC Berkeley graduate student, and coauthored by UC Berkeley research astronomer Máté Ádámkovics, and the other coauthored by Ádámkovics and David R. Ciardi of Caltech’s NASA Exoplanet Science Institute, have been accepted for publication in the journal Icarus.

    Lava fountains on Io

    De Pater discovered the first two massive eruptions on Aug. 15, 2013, using the near-infrared camera (NIRC2) coupled to the adaptive optics system on the Keck II telescope, one of two 10-meter telescopes operated by the W. M. Keck Observatory in Hawaii. The brightest, at a caldera named Rarog Patera, was calculated to have produced a 50 square-mile, 30-foot thick lava flow, while the other, close to another caldera called Heno Patera, produced flows covering 120 square miles. Both were located in Io’s southern hemisphere, near its limb, and were nearly gone when imaged five days later.

    Keck Observatory NIRC2
    Keck/NIRC2

    De Pater discovered a third and even brighter eruption — one of the brightest ever seen on Io — on Aug. 29 at the start of a year-long series of Io observations led by de Kleer, using both the Near-Infrared Imager with adaptive optics on the Gemini North telescope on Mauna Kea, and the SpeX near-infrared spectrometer on NASA’s nearby Infrared Telescope Facility (IRTF). De Kleer used the fortuitous detection of this outburst simultaneously at Gemini and the IRTF to show that the eruption temperature is likely much higher than typical eruption temperatures on Earth today, “indicative of a composition of the magma that on Earth only occurred in our planet’s formative years,” de Kleer said.

    At the time of the observation, the thermal source had an area of up to 32 square miles. The modelled temperature of the lava indicated it had barely had time to cool, suggesting that the event was dominated by lava fountains.

    “We are looking at several cubic miles of lava in rapidly emplaced flows,” said Davies, who has developed models to predict the volume of magma erupted based on spectroscopic observations. “This will help us understand the processes that helped shape the surfaces of all the terrestrial planets, including Earth, and the moon.”

    The team tracked the heat of the third outburst for almost two weeks after its discovery to investigate how volcanoes influence Io’s atmosphere and how these eruptions feed a doughnut of ionized gas – the Io plasma torus – that surrounds Jupiter near Io’s orbit. De Kleer timed her Gemini and IRTF observations to coincide with observations of the plasma torus by the Japanese HISAKI (SPRINT-A) spacecraft, which is in orbit around Earth, so she can correlate the different data sets.

    Hisaki JAXA Japanese spacecraft
    Japanese HISAKI (SPRINT-A) spacecraft

    A volcanic laboratory

    Volcanoes were first noted on Io in 1979, and subsequent studies by the Galileo spacecraft, which first flew by Io in 1996, and ground-based telescopes show that eruptions and lava fountains occur constantly, creating rivers and lakes of lava. But large eruptions, creating vast lava flows in some cases thousands of square miles in area, were thought to be rare. Only 13 were observed between 1978 and 2006, in part because only a handful of astronomers, de Pater among them, regularly scan the moon.

    NASA Galileo
    NASA/Galileo

    Davies’ interest in Io’s volcanoes arises from the moon’s resemblance to an early Earth when heat from the decay of radioactive elements — much more intense than radiogenic heating today — created exotic, high-temperature lavas. Io remains volcanically active for a different reason — Jupiter and the moons Europa and Ganymede constantly tug on it — but the current eruptions on Io are likely similar to those that shaped the surfaces of inner solar system planets such as Earth and Venus in their youth.

    “We are using Io as a volcanic laboratory, where we can look back into the past of the terrestrial planets to get a better understanding of how these large eruptions took place, and how fast and how long they lasted,” Davies said.

    In a third paper accepted by Icarus, de Pater, Davies and their colleagues summarize a decade of Io observations with the Keck II and Gemini telescopes. Their map of the surface of Io pinpointed more than two dozen hot spots whose spatial distribution changed significantly between 2001 and 2010. In 2010 the hot spots were dominated by two volcanic centers: Loki Patera, an extremely large active lava lake on Io, and Kanehekili Fluctus, an area of continuing pahoehoe lava flows.

    The team hopes that monitoring Io’s surface annually will reveal the style of volcanic eruptions on the moon, constrain the composition of the magma, and accurately map the spatial distribution of the heat flow and potential variations over time. This information is essential to get a better understanding of the physical processes involved in the heating and cooling processes on Io, de Pater said.

    The work is funded by the National Science Foundation and NASA’s Outer Planets Research and Planetary Geology and Geophysics Programs.

    See the full article here.

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.
    Keck UCal

    Keck NASA

    Keck Caltech

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 3:58 am on July 3, 2014 Permalink | Reply
    Tags: , , , , Keck Observatory   

    From Keck- “NGC 4651: The Umbrella Galaxy” 

    Keck Observatory

    Keck Observatory

    Keck Observatory

    Spiral galaxy NGC 4651 is a mere 62 million light-years distant, toward the well-groomed northern constellation Coma Berenices.

    ngc4651

    About the size of our Milky Way, this island universe is seen to have a faint umbrella-shaped structure that seems to extend (left) some 100 thousand light-years beyond the bright galactic disk. The giant cosmic umbrella is now known to be composed of tidal star streams – extensive trails of stars gravitationally stripped from a smaller satellite galaxy. The small galaxy was eventually torn apart in repeated encounters as it swept back and forth on eccentric orbits through NGC 4651. In fact, the picture insert zooms in on the smaller galaxy’s remnant core, identified in an extensive exploration of the system, using data from the large Subaru and Keck telescopes on Mauna Kea. Work begun by a remarkable collaboration of amateur and professional astronomers to image faint structures around bright galaxies suggests that even in nearby galaxies, tidal star streams are common markers of such galactic mergers. The result is explained by models of galaxy formation that also apply to our own Milky Way.

    NAOJ Subaru Telescope
    NAOJ Subaru telescope

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.
    Keck UCal

    Keck NASA

    Keck Caltech


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 12:59 pm on June 24, 2014 Permalink | Reply
    Tags: , , , , Keck Observatory   

    From Keck: “Planet Found with an 80,000-Year Orbit” 

    Keck Observatory

    Keck Observatory

    Keck Observatory

    May 14, 2014
    Science Contact
    Marie-Ève Naud
    CRAQ – Université de Montréal
    514 343-6111, ext 3797
    naud@astro.umontreal.ca

    Media Contact
    Steve Jefferson
    W. M. Keck Observatory
    808-881-3827
    sjefferson@keck.hawaii.edu

    A team of researchers has discovered and photographed a gas giant only 155 light years from our solar system, adding to the short list of exoplanets discovered through direct imaging. It is located around GU Psc, a star with one-third the mass of the Sun and located in the constellation Pisces. See the article in The Astrophysical Journal.

    planet
    This direct image was taken at Keck Observatory using NIRC2 and Laser Guide Star Adaptive Optics showing the planet does not have a binary companion.

    The international research team, led by Marie-Ève Naud, a PhD student in the Department of Physics at the Université de Montréal, was able to find this planet by combining observations from the the Gemini Observatory, the Observatoire Mont-Mégantic (OMM), the Canada-France-Hawaii Telescope (CFHT) and the W. M. Keck Observatory.

    Gemini South telescope
    Gemini South

    OMM Telescope
    OMM

    Canada-France-Hawaii Telescope
    Canada-France Hawaii Telescope

    A distant planet that can be studied in detail

    The object was discovered using Gemini-South and followed-up with Gemini-North spectroscopy and CFHT photometry. Once Naud’s team had the entire spectrum, they realized the object had a very low temperature, with properties similar to substellar objects like brown dwarfs or planets.

    One possibility was that the object had a peculiar spectrum simply from its youth, and that this had nothing to do with it being a binary, but the other tantalizing possibility was it was a binary planet, with one component being slightly warmer than the team derived from their analysis and the other component slightly cooler.

    “This would have been the first ever planetary-mass binary, making our object even more of an oddity,” said Étiene Artigau, co-supervisor of Naud’s thesis and astrophysicist at the Université de Montréal. The team obtained Laser Guide Star Adaptive Optics observations using NIRC2 at Keck Observatory to determine it was a single planet.

    GU Psc b is around 2,000 times the Earth-Sun distance from its star, a record among exoplanets. Given this distance, it takes approximately 80,000 Earth years for GU Psc b to make a complete orbit around its star. The researchers took advantage of the large distance between the planet and its star to obtain images. By comparing images obtained in different wavelengths (colors) from the OMM and CFHT, they were able to characterize the planet.

    “Planets are much brighter when viewed in infrared rather than visible light, because their surface temperature is lower compared to other stars,” Naud said

    Knowing where to look

    The researchers were looking around GU Psc because the star had just been identified as a member of the young star group associated with AB Doradus. Young stars (only 100 million years old) are prime targets for planetary detection through imaging because the planets around them are still flush with the heat of their formation and are therefore brighter. This does not mean that planets similar to GU Psc b exist in large numbers, said Artigau. “We observed more than 90 stars and found only one planet, so this is truly an astronomical oddity,” he said.

    Astronomers do not directly measure the mass of a planet or star. Instead, researchers use theoretical models to determine their characteristics. The light spectrum of GU Psc b obtained from the Gemini North telescope in Hawaii was compared to such models to show that it has a temperature of around 800°C. Knowing the age of GU Psc due to its location in the AB Doradus group, the team was able to determine its mass, which is 9-13 times that of Jupiter.

    “GU Psc b is a true gift of nature,” said says René Doyon, co-supervisor of Naud’s thesis and OMM Director. “The large distance that separates it from its star allows it to be studied in depth with a variety of instruments, which will provide a better understanding of giant exoplanets in general.”

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectroscopy and world-leading laser guide star adaptive optics systems.

    NIRC2 (the Near-Infrared Camera, second generation) works in combination with the Keck II adaptive optics system to obtain very sharp images at near-infrared wavelengths, achieving spatial resolutions comparable to or better than those achieved by the Hubble Space Telescope at optical wavelengths. NIRC2 is probably best known for helping to provide definitive proof of a central massive black hole at the center of our galaxy. Astronomers also use NIRC2 to map surface features of solar system bodies, detect planets orbiting other stars, and study detailed morphology of distant galaxies.

    Keck Observatory NIRC2
    NIRC2

    See the full article here.

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.
    Keck UCal

    Keck NASA

    Keck Caltech


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 6:59 pm on June 3, 2014 Permalink | Reply
    Tags: , , , , Keck Observatory   

    From Keck: “Ancient Worlds from Another Galaxy Discovered Next Door” 

    Keck Observatory

    Keck Observatory

    Keck Observatory

    June 3, 2014
    Media Contact:

    Neha Okhandiar
    Public Relations Manager – Science and Engineering
    T: +44 (0)207 882 7927
    E: n.okhandiar@qmul.ac.uk

    Steve Jefferson
    Communications Officer, W. M. Keck Observatory
    T: (808)881-3827
    E: sjefferson@keck.hawaii.edu

    An international team of scientists, led by astronomers at Queen Mary University of London, report of two new planets orbiting Kapteyn’s star, one of the oldest stars found near the Sun. One of the newly-discovered planets could be ripe for life as it orbits at the right distance to the star to allow liquid water on its surface. The paper is being published by the Monthly Notices of the Royal Astronomical Society on June 4.

    Dutch astronomer Jacobus Kapteyn discovered the star at the end of the 19th century. It is the second fastest moving star in the sky and belongs to the galactic halo, an extended cloud of stars orbiting our galaxy. With a third of the mass of the sun, this red-dwarf can be seen in the southern constellation of Pictor with an amateur telescope.

    The astronomers used new data from the 3.6 meter La Silla Observatory in Chile to measure tiny periodic changes in the motion of the star, and followed up with two more high-precision spectrometers to secure the detection: W. M. Keck Observatory’s HIRES instrument installed on the 10-meter Keck I telescope on the summit of Mauna Kea, and PFS at the 6.5 meter Las Campanas Observatory in Chile.

    ESO 3.6m telescope & HARPS at LaSilla
    ESO 3.6m telescope at LaSilla

    Magellan 6.5 meter telescopes
    6.5m Magellan telescopes

    Using the Doppler Effect, which shifts the star’s light spectrum depending on its velocity, the scientists can work out some properties of these planets, such as their masses and periods of orbit.

    “We were surprised to find planets orbiting Kapteyn’s star,” said Dr Guillem Anglada-Escude, from QMUL’s School of Physics and Astronomy. “Previous data showed some moderate excess of variability, so we were looking for very short period planets when the new signals showed up loud and clear.”

    Paul Butler and I have been obtaining precision radial velocity data of Kapteyn’s star for over a decade at Keck, and were thus heavily invested in this work,” said Steve Vogt, a professor of astronomy at the University of California, Santa Cruz that contributed the data from Keck Observatory. “This quite southerly star was quite a tough stretch though from Keck, as the star never gets higher than 26 degrees altitude. Fortunately, Mauna Kea has excellent seeing and a clear view all the way to the southern horizon.”

    “The discovery of planets around this star are the hard-won fruit of many years of patient, careful acquisition of high precision data from the very stable HIRES instrument on Keck,” said Paul Butler, astronomer with Carnegie Institution for Science that works with Vogt. “Our success was also due, in no small part, to the efforts of the excellent Keck staff that keep this complex facility finely-tuned year in and year out.”

    Based on the data collected, the planet Kapteyn b might support liquid water as its mass is at least five times that of Earth’s and orbits the star every 48 days. The second planet, Kapteyn c is a massive super-Earth in comparison: its year lasts for 121 days and astronomers think it’s too cold to support liquid water.

    At the moment, only a few properties of the planets are known: approximate masses, orbital periods, and distances to the star. By measuring the atmosphere of these planets with next-generation instruments, scientists will try to find out whether they can support liquid water.

    Typical planetary systems detected by NASA’s Kepler mission are hundreds of light-years away. In contrast, Kapteyn’s star is only 13 light years away from Earth and is the 25th nearest star to the Sun.

    Kapteyn’s star was born in a dwarf galaxy absorbed and disrupted by the early Milky Way. This galactic disruption event put the star in its fast halo orbit. The likely remnant core of the original dwarf galaxy is Omega Centauri, an enigmatic globular cluster 16,000 light years from Earth which contains hundreds of thousands of similarly old suns. This sets the most likely age of the planets at 11.5 billion years, which is 2.5 times older than Earth and 2 billion years younger than the universe itself (around 13.7 billion years).

    Omega Centauri
    Omega Centauri
    The globular cluster Omega Centauri — with as many as ten million stars — is seen in all its splendour in this image captured with the WFI camera from ESO’s La Silla Observatory. The image shows only the central part of the cluster — about the size of the full moon on the sky (half a degree). North is up, East is to the left. This colour image is a composite of B, V and I filtered images. Note that because WFI is equipped with a mosaic detector, there are two small gaps in the image which were filled with lower quality data from the Digitized Sky Survey.

    “It does make you wonder what kind of life could have evolved on those planets over such a long time,” Anglada-Escude said.

    “This discovery is very exciting,” said Professor Richard Nelson, Head of the Astronomy Unit at QMUL, who didn’t participate in the research. “It suggests that many potentially habitable worlds will be found in the next years around nearby stars by ground-based and space-based observatories, such as PLATO. Until we have detected a larger number of them, the properties and possible habitability of the near-most planetary systems will remain mysterious.”

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectroscopy and world-leading laser guide star adaptive optics systems.

    HIRES (the High-Resolution Echelle Spectrometer) produces spectra of single objects at very high spectral resolution, yet covering a wide wavelength range. It does this by separating the light into many “stripes” of spectra stacked across a mosaic of three large CCD detectors. HIRES is famous for finding planets orbiting other stars. Astronomers also use HIRES to study distant galaxies and quasars, finding clues to the Big Bang.

    Keck Eschellette Spectrograph
    High-Resolution Echelle Spectrometer

    See the full article here.

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.
    Keck UCal

    Keck NASA

    Keck Caltech


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 1:53 pm on April 17, 2014 Permalink | Reply
    Tags: , , , , Keck Observatory   

    From Keck: “First Potentially Habitable Earth-Sized Planet Confirmed by Keck and Gemini Observatories” 

    Keck Observatory

    Keck Observatory

    Keck Observatory

    April 17, 2014
    Media Contact:
    Steve Jefferson
    Communications Officer
    W. M. Keck Observatory
    sjefferson@keck.hawaii.edu
    (808) 881-3827 (Desk)
    (808) 345-1319 (Cell)

    Science Contacts:
    Elisa Quintana
    SETI Institute
    elisa.quintana@nasa.gov
    650-604-2467 (Desk)
    415-730-1724 (Cell)

    Steve Howell
    Project Scientist, Kepler Mission
    NASA Ames Research Center, Moffett Field, CA
    steve.b.howell@nasa.gov
    (650) 604-4238 (Desk)(520) 461-6925 (Cell)

    The first Earth-sized exoplanet orbiting within the habitable zone of another star has been confirmed by observations with both the W. M. Keck Observatory and the Gemini Observatory. The initial discovery, made by the Kepler Space Telescope, is one of a handful of smaller planets found by Kepler and verified using large ground-based telescopes.

    NOAO Gemini North
    NOAO Gemini North Telescope

    NASA Kepler Telescope
    NASA/Kepler

    “What makes this finding particularly compelling is that this Earth-sized planet, one of five orbiting this star, which is cooler than the Sun, resides in a temperate region where water could exist in liquid form,” says Elisa Quintana of the SETI Institute and NASA Ames Research Center who led the paper published in the current issue of the journal Science. The region in which this planet orbits its star is called the habitable zone, as it is thought that life would most likely form on planets with liquid water.

    Steve Howell, Kepler’s Project Scientist and a co-author on the paper, adds that neither Kepler (nor any telescope) is currently able to directly spot an exoplanet of this size and proximity to its host star. “However, what we can do is eliminate essentially all other possibilities so that the validity of these planets is really the only viable option.”

    With such a small host star, the team employed a technique that eliminated the possibility that either a background star or a stellar companion could be mimicking what Kepler detected. To do this, the team obtained extremely high spatial resolution observations from the eight-meter Gemini North telescope on Mauna Kea in Hawai`i using a technique called speckle imaging, as well as adaptive optics (AO) observations from the ten-meter Keck II telescope, Gemini’s neighbor on Mauna Kea. Together, these data allowed the team to rule out sources close enough to the star’s line-of-sight to confound the Kepler evidence, and conclude that Kepler’s detected signal has to be from a small planet transiting its host star.

    “The Keck and Gemini data are two key pieces of this puzzle,” says Quintana. “Without these complementary observations we wouldn’t have been able to confirm this Earth-sized planet.”

    The Gemini “speckle” data directly imaged the system to within about 400 million miles (about 4 AU, approximately equal to the orbit of Jupiter in our solar system) of the host star and confirmed that there were no other stellar size objects orbiting within this radius from the star. Augmenting this, the Keck AO observations probed a larger region around the star but to fainter limits. According to Quintana, “These Earth-sized planets are extremely hard to detect and confirm, and now that we’ve found one, we want to search for more. Gemini and Keck will no doubt play a large role in these endeavors.”

    The planet designated Kepler-186f is earth-sized and orbits within the star’s habitable zone. The host star, Kepler-186, is an M1-type dwarf star relatively close to our solar system, at about 500 light years and is in the constellation of Cygnus. The star is very dim, being over half a million times fainter than the faintest stars we can see with the naked eye. Five small planets have been found orbiting this star, four of which are in very short-period orbits and are very hot.

    The Kepler evidence for this planetary system comes from the detection of planetary transits. These transits can be thought of as tiny eclipses of the host star by a planet (or planets) as seen from the Earth. When such planets block part of the star’s light, its total brightness diminishes. Kepler detects that as a variation in the star’s total light output and evidence for planets. So far more than 2,500 possible planets have been detected by this technique with Kepler.

    The Gemini data utilized the Differential Speckle Survey Instrument (DSSI) on the Gemini North telescope. DSSI is a visiting instrument developed by a team led by Howell who adds, “DSSI on Gemini Rocks! With this combination, we can probe down into this star system to a distance of about 4 times that between the Earth and the Sun. It’s simply remarkable that we can look inside other solar systems.” DSSI works on a principle that utilizes multiple short exposures of an object to capture and remove the noise introduced by atmospheric turbulence producing images with extreme detail.

    “The observations from Keck and Gemini, combined with other data and numerical calculations, allowed us to be 99.98% confident that Kepler-186f is real,” says Thomas Barclay, a Kepler scientist and also a co-author on the paper. “Kepler started this story, and Gemini and Keck helped close it,” adds Barclay.

    Observations with the W.M. Keck Observatory used the Natural Guide Star Adaptive Optics system with the NIRC2 camera on the Keck II telescope. NIRC2 (the Near-Infrared Camera, second generation) works in combination with the Keck II adaptive optics system to obtain very sharp images at near-infrared wavelengths, achieving spatial resolutions comparable to or better than those achieved by the Hubble Space Telescope at optical wavelengths. NIRC2 is probably best known for helping to provide definitive proof of a central massive black hole at the center of our galaxy. Astronomers also use NIRC2 to map surface features of solar system bodies, detect planets orbiting other stars, and study detailed morphology of distant galaxies.

    See the full article here.

    [I was unable to find graphic of Differential Speckle Survey Instrument (DSSI), or NIRC2 (the Near-Infrared Camera, second generation)

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth. The two, 10-meter optical/infrared telescopes on the summit of Mauna Kea on the Island of Hawaii feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrometer and world-leading laser guide star adaptive optics systems. Keck Observatory is a private 501(c) 3 non-profit organization and a scientific partnership of the California Institute of Technology, the University of California and NASA.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.
    Keck UCal

    Keck NASA

    Keck Caltech


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 7:12 pm on April 2, 2014 Permalink | Reply
    Tags: , , , , Keck Observatory   

    From Keck: “Aussie Scientist Finds Rare Supernova at Keck Observatory” 

    Keck Observatory

    Keck Observatory

    Keck Observatory

    April 2, 2014
    By Prof. Duncan Forbes, professor of astronomy at Swinburne University in Melbourne, Australia

    It was a clear night on the summit of Mauna Kea at Keck Observatory on the 20th March. My colleagues and I were using the Echellette Spectrograph and Imager (ESI) instrument, which looks at faint objects in the visible wavelengths, to study star clusters and small galaxies.

    Keck Eschellette Spectrograph
    Echellette Spectrograph and Imager (ESI)

    I was actually in our special ‘remote ops’ room at Swinburne University, with my postdoc, Joachim Janz. This is a room decked out with a computer, a backup computer, a video-link to Keck Observatory and a dedicated Internet connection. As we are 21 hours ahead of Hawaii, it was a Friday afternoon when we started observing that Thursday night. My colleagues Sam Penny and Mark Norris were in the Keck control room, and Aaron Romanowsky was in his remote ops room at UC Santa Cruz.

    Shortly into our night’s observing, we noticed a bright source in the guide camera image that wasn’t on our finding chart of that region. Still we managed to find our target and took a spectrum of it. But we decided to go back and see if that `new’ bright source was still there. Sure enough it was and it hadn’t moved. It was probably a supernova (or an asteroid coming straight at us!), so I decided to get a 5min spectrum with ESI. And indeed we had found a supernova—a type Ia to be exact. Type Ia supernovae are fairly rare in the nearby Universe and represent the explosion of at least one white dwarf star in a binary system. It is this same type of supernova that led to the discovery of Dark Energy in the Universe using the Keck Observatory, and three Nobel prizes.

    Our supernova is located in the outskirts of a galaxy some 100 million light years from us—so it exploded 100 million years ago but the light only reached us that night.

    I later found out that an automated telescope on the Palomar Mountain overlooking Los Angeles detected the supernova shortly before us. They also managed to get a spectrum but that was taken after our Keck II/ESI spectrum. The exciting thing is that both the Palomar Observatory and ourselves managed to observe the supernova in the 1-2 weeks before it reaches its maximum brightness (and then fades steadily after that).

    Caltech Palomar Observatory
    Palomar

    The supernova has been given the designation SN2014ai.

    All in all, not bad for a late night at the office…

    See the full article here.

    Mission
    To advance the frontiers of astronomy and share our discoveries with the world.

    Today Keck Observatory is supported by both public funding sources and private philanthropy. As a 501(c)3, the organization is managed by the California Association for Research in Astronomy (CARA), whose Board of Directors includes representatives from the California Institute of Technology and the University of California, with liaisons to the board from NASA and the Keck Foundation.
    Keck UCal

    Keck NASA

    Keck Caltech


    ScienceSprings is powered by MAINGEAR computers

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 355 other followers

%d bloggers like this: