Tagged: Inflation Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:00 pm on November 20, 2014 Permalink | Reply
    Tags: , Inflation, , ,   

    From phys.org: “Gravity may have saved the universe after the Big Bang, say researchers” 

    physdotorg
    phys.org

    Nov 18, 2014
    No Writer Credit

    New research by a team of European physicists could explain why the universe did not collapse immediately after the Big Bang.

    Studies of the Higgs particle – discovered at CERN in 2012 and responsible for giving mass to all particles – have suggested that the production of Higgs particles during the accelerating expansion of the very early universe (inflation) should have led to instability and collapse.

    in
    Time Line of the Universe. Credit: NASA/WMAP Science Team

    Scientists have been trying to find out why this didn’t happen, leading to theories that there must be some new physics that will help explain the origins of the universe that has not yet been discovered. Physicists from Imperial College London, and the Universities of Copenhagen and Helsinki, however, believe there is a simpler explanation.

    In a new study in Physical Review Letters, the team describe how the spacetime curvature – in effect, gravity – provided the stability needed for the universe to survive expansion in that early period. The team investigated the interaction between the Higgs particles and gravity, taking into account how it would vary with energy.

    They show that even a small interaction would have been enough to stabilise the universe against decay.

    “The Standard Model of particle physics, which scientists use to explain elementary particles and their interactions, has so far not provided an answer to why the universe did not collapse following the Big Bang,” explains Professor Arttu Rajantie, from the Department of Physics at Imperial College London.

    sm
    The Standard Model of elementary particles, with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    “Our research investigates the last unknown parameter in the Standard Model – the interaction between the Higgs particle and gravity. This parameter cannot be measured in particle accelerator experiments, but it has a big effect on the Higgs instability during inflation. Even a relatively small value is enough to explain the survival of the universe without any new physics!”

    The team plan to continue their research using cosmological observations to look at this interaction in more detail and explain what effect it would have had on the development of the early universe. In particular, they will use data from current and future European Space Agency missions measuring cosmic microwave background radiation and gravitational waves.

    “Our aim is to measure the interaction between gravity and the Higgs field using cosmological data,” says Professor Rajantie. “If we are able to do that, we will have supplied the last unknown number in the Standard Model of particle physics and be closer to answering fundamental questions about how we are all here.”

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    About Phys.org in 100 Words

    Phys.org™ (formerly Physorg.com) is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004, Phys.org’s readership has grown steadily to include 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page set-up, RSS/XML feeds, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 3:44 pm on November 10, 2014 Permalink | Reply
    Tags: , , Inflation, , ,   

    From Quanta: “Multiverse Collisions May Dot the Sky” 

    Quanta Magazine
    Quanta Magazine

    November 10, 2014
    Jennifer Ouellette

    Like many of her colleagues, Hiranya Peiris, a cosmologist at University College London, once largely dismissed the notion that our universe might be only one of many in a vast multiverse. It was scientifically intriguing, she thought, but also fundamentally untestable. She preferred to focus her research on more concrete questions, like how galaxies evolve.

    Then one summer at the Aspen Center for Physics, Peiris found herself chatting with the Perimeter Institute’s Matt Johnson, who mentioned his interest in developing tools to study the idea. He suggested that they collaborate.

    At first, Peiris was skeptical. “I think as an observer that any theory, however interesting and elegant, is seriously lacking if it doesn’t have testable consequences,” she said. But Johnson convinced her that there might be a way to test the concept. If the universe that we inhabit had long ago collided with another universe, the crash would have left an imprint on the cosmic microwave background (CMB), the faint afterglow from the Big Bang. And if physicists could detect such a signature, it would provide a window into the multiverse.

    Cosmic Background Radiation Planck
    Cosmic Microwave Background per ESA/Planck

    Erick Weinberg, a physicist at Columbia University, explains this multiverse by comparing it to a boiling cauldron, with the bubbles representing individual universes — isolated pockets of space-time. As the pot boils, the bubbles expand and sometimes collide. A similar process may have occurred in the first moments of the cosmos.

    In the years since their initial meeting, Peiris and Johnson have studied how a collision with another universe in the earliest moments of time would have sent something similar to a shock wave across our universe. They think they may be able to find evidence of such a collision in data from the Planck space telescope, which maps the CMB.

    The project might not work, Peiris concedes. It requires not only that we live in a multiverse but also that our universe collided with another in our primal cosmic history. But if physicists succeed, they will have the first improbable evidence of a cosmos beyond our own.

    When Bubbles Collide

    Multiverse theories were once relegated to science fiction or crackpot territory. “It sounds like you’ve gone to crazy land,” said Johnson, who holds joint appointments at the Perimeter Institute of Theoretical Physics and York University. But scientists have come up with many versions of what a multiverse might be, some less crazy than others.

    The multiverse that Peiris and her colleagues are interested in is not the controversial “many worlds” hypothesis that was first proposed in the 1950s and holds that every quantum event spawns a separate universe. Nor is this concept of a multiverse related to the popular science-fiction trope of parallel worlds, new universes that pinch off from our space-time and become separate realms. Rather, this version arises as a consequence of inflation, a widely accepted theory of the universe’s first moments.

    Inflation holds that our universe experienced a sudden burst of rapid expansion an instant after the Big Bang, blowing up from a infinitesimally small speck to one spanning a quarter of a billion light-years in mere fractions of a second.

    Yet inflation, once started, tends to never completely stop. According to the theory, once the universe starts expanding, it will end in some places, creating regions like the universe we see all around us today. But elsewhere inflation will simply keep on going eternally into the future.

    This feature has led cosmologists to contemplate a scenario called eternal inflation. In this picture, individual regions of space stop inflating and become “bubble universes” like the one in which we live. But on larger scales, exponential expansion continues forever, and new bubble universes are continually being created. Each bubble is deemed a universe in its own right, despite being part of the same space-time, because an observer could not travel from one bubble to the next without moving faster than the speed of light. And each bubble may have its own distinct laws of physics. “If you buy eternal inflation, it predicts a multiverse,” Peiris said.

    In 2012, Peiris and Johnson teamed up with Anthony Aguirre and Max Wainwright — both physicists at the University of California, Santa Cruz — to build a simulated multiverse with only two bubbles. They studied what happened after the bubbles collided to determine what an observer would see. The team concluded that a collision of two bubble universes would appear to us as a disk on the CMB with a distinctive temperature profile.

    bubble
    Olena Shmahalo/Quanta Magazine; source: S. M. Freeney et. al., Physical Review Letters

    An ancient collision with a bubble universe would have altered the temperature of the cosmic microwave background (left), creating a faint disk in the sky (right) that could potentially be observed.

    To guard against human error — we tend to see the patterns we want to see — they devised a set of algorithms to automatically search for these disks in data from the Wilkinson Microwave Anisotropy Probe (WMAP), a space-based observatory. The program identified four potential regions with temperature fluctuations consistent with what could be a signature of a bubble collision. When data from the Planck satellite becomes available later this year, researchers should be able to improve on that earlier analysis.

    WMAP
    WMAP

    ESA Planck
    ESA/Planck

    Yet detecting convincing signatures of the multiverse is tricky. Simply knowing what an encounter might look like requires a thorough understanding of the dynamics of bubble collisions — something quite difficult to model on a computer, given the complexity of such interactions.

    When tackling a new problem, physicists typically find a good model that they already understand and adapt it by making minor tweaks they call “perturbations.” For instance, to model the trajectory of a satellite in space, a physicist might use the classical laws of motion outlined by Isaac Newton in the 17th century and then make small refinements by calculating the effects of other factors that might influence its motion, such as pressure from the solar wind. For simple systems, there should be only small discrepancies from the unperturbed model. Try to calculate the airflow patterns of a complex system like a tornado, however, and those approximations break down. Perturbations introduce sudden, very large changes to the original system instead of smaller, predictable refinements.

    Modeling bubble collisions during the inflationary period of the early universe is akin to modeling a tornado. By its very nature, inflation stretches out space-time at an exponential rate — precisely the kind of large jumps in values that make calculating the dynamics so challenging.

    “Imagine you start with a grid, but within an instant, the grid has expanded to a massive size,” Peiris said. With her collaborators, she has used techniques like adaptive mesh refinement — an iterative process of winnowing out the most relevant details in such a grid at increasingly finer scales — in her simulations of inflation to deal with the complexity. Eugene Lim, a physicist at King’s College London, has found that an unusual type of traveling wave might help simplify matters even further.

    Waves of Translation

    In August 1834, a Scottish engineer named John Scott Russell was conducting experiments along Union Canal with an eye toward improving the efficiency of the canal boats. One boat being drawn by a team of horses stopped suddenly, and Russell noted a solitary wave in the water that kept rolling forward at a constant speed without losing its shape. The behavior was unlike typical waves, which tend to flatten out or rise to a peak and topple quickly. Intrigued, Russell tracked the wave on horseback for a couple of miles before it finally dissipated in the channel waters. This was the first recorded observation of a soliton.

    Russell was so intrigued by the indomitable wave that he built a 30-foot wave tank in his garden to further study the phenomenon, noting key characteristics of what he called “the wave of translation.” Such a wave could maintain size, shape and speed over longer distances than usual. The speed depended on the wave’s size, and the width depended on the depth of the water. And if a large solitary wave overtook a smaller one, the larger, faster wave would just pass right through.

    Russell’s observations were largely dismissed by his peers because his findings seemed to contradict what was known about water wave physics at the time. It wasn’t until the mid-1960s that such waves were dubbed solitons and physicists realized their usefulness in modeling problems in diverse areas such as fiber optics, biological proteins and DNA. Solitons also turn up in certain configurations of quantum field theory. Poke a quantum field and you will create an oscillation that usually dissipates outward, but configure things in just the right way and that oscillation will maintain its shape — just like Russell’s wave of translation.

    Because solitons are so stable, Lim believes they could work as a simplified toy model for the dynamics of bubble collisions in the multiverse, providing physicists with better predictions of what kinds of signatures might show up in the CMB. If his hunch is right, the expanding walls of our bubble universe are much like solitons.

    However, while it is a relatively straightforward matter to model a solitary standing wave, the dynamics become vastly more complicated and difficult to calculate when solitons collide and interact, forcing physicists to rely on computer simulations instead. In the past, researchers have used a particular class of soliton with an exact mathematical solution and tweaked that model to suit their purposes. But this approach only works if the target system under study is already quite similar to the toy model; otherwise the changes are too large to calculate.

    To get around that hurdle, Lim devised a neat trick based on a quirky feature of soliton collisions. When imagining two objects colliding, we naturally assume that the faster they are moving, the greater the impact and the more complicated the dynamics. Two cars ramming each other at high speeds, for instance, will produce scattered debris, heat, noise and other effects. The same is true for colliding solitons — at least initially. Collide two solitons very slowly, and there will be very little interaction, according to Lim. As the speed increases, the solitons interact more strongly.

    But Lim found that as the speed continues to increase, the pattern eventually reverses: The soliton interaction begins to decrease. By the time they are traveling at the speed of light, there is no interaction at all. “They just fly right past each other,” Lim said. “The faster you collide two solitons, the simpler they become.” The lack of interactions makes it easier to model the dynamics of colliding solitons, as well as colliding bubble universes with solitons as their “edges,” since the systems are roughly similar.

    According to Johnson, Lim has uncovered a very simple rule that can be applied broadly: Multiverse interactions are weak during high-speed collisions, making it easier to simulate the dynamics of those encounters. One can simply create a new model of the multiverse, use solitons as a tool to map the new model’s expected signatures onto cosmic microwave data, and rule out any theories that don’t match what researchers see. This process would help physicists identify the most viable models for the multiverse, which — while still speculative — would be consistent both with the latest observational data and with inflationary theory.

    The Multiverse’s Case for String Theory

    One reason that more physicists are taking the idea of the multiverse seriously is that certain such models could help resolve a significant challenge in string theory. One of the goals of string theory has been to unify quantum mechanics and general relativity, two separate “rule books” in physics that govern very different size scales, into a single, simple solution.

    But around 10 years ago, “the dream of string theory kind of exploded,” Johnson said — and not in a good way. Researchers began to realize that string theory doesn’t provide a unique solution. Instead, it “gives you the theory of a vast number of worlds,” Weinberg said. A common estimate — one that Weinberg thinks is conservative — is 10500 possibilities. This panoply of worlds implies that string theory can predict every possible outcome.

    The multiverse would provide a possible means of incorporating all the different worlds predicted by string theory. Each version could be realized in its own bubble universe. “Everything depends on which part of the universe you live in,” Lim said.

    Peiris acknowledges that this argument has its critics. “It can predict anything, and therefore it’s not valid,” Peiris said of the reasoning typically used to dismiss the notion of a multiverse as a tautology, rather than a true scientific theory. “But I think that’s the wrong way to think about it.” The theory of evolution, Peiris argues, also resembles a tautology in certain respects — “an organism exists because it survived” — yet it holds tremendous explanatory power. It is a simple model that requires little initial input to produce the vast diversity of species we see today.

    A multiverse model tied to eternal inflation could have the same kind of explanatory power. In this case, the bubble universes function much like speciation. Those universes that happen to have the right laws of physics will eventually “succeed” — that is, they will become home to conscious observers like ourselves. If our universe is one of many in a much larger multiverse, our existence seems less unlikely.

    Uncertain Signals

    Ultimately, however, Peiris’ initial objection still stands: Without some means of gathering experimental evidence, the multiverse hypothesis will be untestable by definition. As such, it will lurk on the fringes of respectable physics — hence the strong interest in detecting bubble collision signatures in the CMB.

    Of course, “just because these bubble collisions can leave a signature doesn’t mean they do leave a signature,” Peiris emphasized. “We need nature to be kind to us.” An observable signal could be a rare find, given how quickly space expanded during inflation. The collisions may not have been rare, but subsequent inflation “tends to dilute away the effects of the collision just like it dilutes away all other prior ‘structure’ in the early universe, leaving you with a small chance of seeing a signal in the CMB sky,” Peiris said.

    “My own feeling is you need to adjust the numbers rather finely to get it to work,” Weinberg said. The rate of formation of the bubble universes is key. If they had formed slowly, collisions would not have been possible because space would have expanded and driven the bubbles apart long before any collision could take place. Alternatively, if the bubbles had formed too quickly, they would have merged before space could expand sufficiently to form disconnected pockets. Somewhere in between is the Goldilocks rate, the “just right” rate at which the bubbles would have had to form for a collision to be possible.

    Researchers also worry about finding a false positive. Even if such a collision did happen and evidence was imprinted on the CMB, spotting the telltale pattern would not necessarily constitute evidence of a multiverse. “You can get an effect and say it will be consistent with the calculated predictions for these [bubble] collisions,” Weinberg said. “But it might well be consistent with lots of other things.” For instance, a distorted CMB might be evidence of theoretical entities called cosmic strings. These are like the cracks that form in the ice when a lake freezes over, except here the ice is the fabric of space-time. Magnetic monopoles are another hypothetical defect that could affect the CMB, as could knots or twists in space-time called textures.

    Weinberg isn’t sure it would even be possible to tell the difference between these different possibilities, especially because many models of eternal inflation exist. Without knowing the precise details of the theory, trying to make a positive identification of the multiverse would be like trying to distinguish between the composition of two meteorites that hit the roof of a house solely by the sound of the impacts, without knowing how the house is constructed and with what materials.

    Should a signature for a bubble collision be confirmed, Peiris doesn’t see a way to study another bubble universe any further because by now it would be entirely out of causal contact with ours. But it would be a stunning validation that the notion of a multiverse deserves a seat at the testable physics table.

    And should that signal turn out to be evidence for cosmic strings or magnetic monopoles instead, it would still constitute exciting new physics at the frontier of cosmology. In that respect, “the cosmic microwave background radiation is the underpinning of modern cosmology,” Peiris said. “It’s the gift that keeps on giving.”

    See the full article, with video, here.

    Formerly known as Simons Science News, Quanta Magazine is an editorially independent online publication launched by the Simons Foundation to enhance public understanding of science. Why Quanta? Albert Einstein called photons “quanta of light.” Our goal is to “illuminate science.” At Quanta Magazine, scientific accuracy is every bit as important as telling a good story. All of our articles are meticulously researched, reported, edited, copy-edited and fact-checked.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 3:32 pm on April 6, 2014 Permalink | Reply
    Tags: , , , , , Inflation,   

    From Symmetry: “Inflation” 

    January 01, 2005
    Logbook

    In 1978 Alan Guth heard about the “flatness problem” of the universe while attending a talk on cosmology—a field he was only marginally curious about. A year later, Guth found a solution.

    Alan Guth

    At the beginning of the big bang, for an incredibly small fraction of a second, the universe could have expanded exponentially fast, rapidly transforming curved space into flat one. Quickly running out of energy, the expansion would slow down, eventually reaching today’s sluggish pace. Such an initial explosive rush, which Guth later called inflation, could solve a number of cosmic paradoxes (see Growth of Inflation).

    Although scientists still debate the driving force behind inflation—Guth soon realized his original idea of “supercooling” wouldn’t work—the concept of inflation has become the leading theme and the crux of modern cosmology.

    inflation
    Courtesy of Alan Guth and the Adler Planetarium and Astronomy Museum in Chicago

    Guth’s notebook is now part of a permanent exhibit at the Adler Planetarium and Astronomy Museum in Chicago.

    See the full article here.

    Symmetry is a joint Fermilab/SLAC publication.



    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 9:24 am on March 20, 2014 Permalink | Reply
    Tags: , , , , , , Inflation, ,   

    From M.I.T.: “3 Questions: Alan Guth on new insights into the ‘Big Bang’” 

    March 19, 2014
    Steve Bradt, MIT News Office

    Earlier this week, scientists announced that a telescope observing faint echoes of the so-called “Big Bang” had found evidence of the universe’s nearly instantaneous expansion from a mere dot into a dense ball containing more than 1090 particles. This discovery, using the BICEP2 telescope at the South Pole, provides the first strong evidence of “cosmic inflation” at the birth of our universe, when it expanded billions of times over.

    BICEP Telescope
    BICEP2 Telescope at South Pole

    The theory of cosmic inflation was first proposed in 1980 by Alan Guth, now the Victor F. Weisskopf Professor of Physics at MIT. Inflation has become a cornerstone of Big Bang cosmology, but until now it had remained a theory without experimental support. Guth discussed the significance of the new BICEP2 results with MIT News.

    ag
    Dr. Alan Guth

    Q: Can you explain the theory of cosmic inflation that you first put forth in 1980?

    A: I usually describe inflation as a theory of the “bang” of the Big Bang: It describes the propulsion mechanism that drove the universe into the period of tremendous expansion that we call the Big Bang. In its original form, the Big Bang theory never was a theory of the bang. It said nothing about what banged, why it banged, or what happened before it banged.

    The original Big Bang theory was really a theory of the aftermath of the bang. The universe was already hot and dense, and already expanding at a fantastic rate. The theory described how the universe was cooled by the expansion, and how the expansion was slowed by the attractive force of gravity.

    Inflation proposes that the expansion of the universe was driven by a repulsive form of gravity. According to [Isaac] Newton, gravity is a purely attractive force, but this changed with [Albert] Einstein and the discovery of general relativity. General relativity describes gravity as a distortion of spacetime, and allows for the possibility of repulsive gravity.

    Modern particle theories strongly suggest that at very high energies, there should exist forms of matter that create repulsive gravity. Inflation, in turn, proposes that at least a very small patch of the early universe was filled with this repulsive-gravity material. The initial patch could have been incredibly small, perhaps as small as 10-24 centimeter, about 100 billion times smaller than a single proton. The small patch would then start to exponentially expand under the influence of the repulsive gravity, doubling in size approximately every 10-37 second. To successfully describe our visible universe, the region would need to undergo at least 80 doublings, increasing its size to about 1 centimeter. It could have undergone significantly more doublings, but at least this number is needed.

    During the period of exponential expansion, any ordinary material would thin out, with the density diminishing to almost nothing. The behavior in this case, however, is very different: The repulsive-gravity material actually maintains a constant density as it expands, no matter how much it expands! While this appears to be a blatant violation of the principle of the conservation of energy, it is actually perfectly consistent.

    This loophole hinges on a peculiar feature of gravity: The energy of a gravitational field is negative. As the patch expands at constant density, more and more energy, in the form of matter, is created. But at the same time, more and more negative energy appears in the form of the gravitational field that is filling the region. The total energy remains constant, as it must, and therefore remains very small.

    It is possible that the total energy of the entire universe is exactly zero, with the positive energy of matter completely canceled by the negative energy of gravity. I often say that the universe is the ultimate free lunch, since it actually requires no energy to produce a universe.

    At some point the inflation ends because the repulsive-gravity material becomes metastable. The repulsive-gravity material decays into ordinary particles, producing a very hot soup of particles that form the starting point of the conventional Big Bang. At this point the repulsive gravity turns off, but the region continues to expand in a coasting pattern for billions of years to come. Thus, inflation is a prequel to the era that cosmologists call the Big Bang, although it of course occurred after the origin of the universe, which is often also called the Big Bang.

    Q: What is the new result announced this week, and how does it provide critical support for your theory?

    A: The stretching effect caused by the fantastic expansion of inflation tends to smooth things out — which is great for cosmology, because an ordinary explosion would presumably have left the universe very splotchy and irregular. The early universe, as we can see from the afterglow of the cosmic microwave background (CMB) radiation, was incredibly uniform, with a mass density that was constant to about one part in 100,000.

    CMB Planck ESA
    Cosmic Microwave Background

    ESA Planck
    ESA/Planck

    The tiny nonuniformities that did exist were then amplified by gravity: In places where the mass density was slightly higher than average, a stronger-than-average gravitational field was created, which pulled in still more matter, creating a yet stronger gravitational field. But to have structure form at all, there needed to be small nonuniformities at the end of inflation.

    In inflationary models, these nonuniformities — which later produce stars, galaxies, and all the structure of the universe — are attributed to quantum theory. Quantum field theory implies that, on very short distance scales, everything is in a state of constant agitation. If we observed empty space with a hypothetical, and powerful, magnifying glass, we would see the electric and magnetic fields undergoing wild oscillations, with even electrons and positrons popping out of the vacuum and then rapidly disappearing. The effect of inflation, with its fantastic expansion, is to stretch these quantum fluctuations to macroscopic proportions.

    The temperature nonuniformities in the cosmic microwave background were first measured in 1992 by the COBE satellite, and have since been measured with greater and greater precision by a long and spectacular series of ground-based, balloon-based, and satellite experiments. They have agreed very well with the predictions of inflation. These results, however, have not generally been seen as proof of inflation, in part because it is not clear that inflation is the only possible way that these fluctuations could have been produced.

    NASA COBE satellite
    NASA/COBE

    The stretching effect of inflation, however, also acts on the geometry of space itself, which according to general relativity is flexible. Space can be compressed, stretched, or even twisted. The geometry of space also fluctuates on small scales, due to the physics of quantum theory, and inflation also stretches these fluctuations, producing gravity waves in the early universe.

    The new result, by John Kovac and the BICEP2 collaboration, is a measurement of these gravity waves, at a very high level of confidence. They do not see the gravity waves directly, but instead they have constructed a very detailed map of the polarization of the CMB in a patch of the sky. They have observed a swirling pattern in the polarization (called “B modes”) that can be created only by gravity waves in the early universe, or by the gravitational lensing effect of matter in the late universe.

    But the primordial gravity waves can be separated, because they tend to be on larger angular scales, so the BICEP2 team has decisively isolated their contribution. This is the first time that even a hint of these primordial gravity waves has been detected, and it is also the first time that any quantum properties of gravity have been directly observed.

    Q: How would you describe the significance of these new findings, and your reaction to them?

    A: The significance of these new findings is enormous. First of all, they help tremendously in confirming the picture of inflation. As far as we know, there is nothing other than inflation that can produce these gravity waves. Second, it tells us a lot about the details of inflation that we did not already know. In particular, it determines the energy density of the universe at the time of inflation, which is something that previously had a wide range of possibilities.

    By determining the energy density of the universe at the time of inflation, the new result also tells us a lot about which detailed versions of inflation are still viable, and which are no longer viable. The current result is not by itself conclusive, but it points in the direction of the very simplest inflationary models that can be constructed.

    Finally, and perhaps most importantly, the new result is not the final story, but is more like the opening of a new window. Now that these B modes have been found, the BICEP2 collaboration and many other groups will continue to study them. They provide a new tool to study the behavior of the early universe, including the process of inflation.

    When I (and others) started working on the effect of quantum fluctuations in the early 1980s, I never thought that anybody would ever be able to measure these effects. To me it was really just a game, to see if my colleagues and I could agree on what the fluctuations would theoretically look like. So I am just astounded by the progress that astronomers have made in measuring these minute effects, and particularly by the new result of the BICEP2 team. Like all experimental results, we should wait for it to be confirmed by other groups before taking it as truth, but the group seems to have been very careful, and the result is very clean, so I think it is very likely that it will hold up.

    See the full article here.


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 12:17 pm on March 19, 2014 Permalink | Reply
    Tags: , , , , , , Inflation   

    From Fermilab: “From quantum to cosmos” 


    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    Wednesday, March 19, 2014

    ch
    Craig Hogan, head of the Center for Particle Astrophysics, wrote this column.

    On Monday morning, cosmologists around the world felt a wave of ecstasy as they learned of a breathtaking discovery: a particular pattern of light coming from the early universe, imprinted on the cosmic expansion during its first moments. It feels like a love letter from Mother Nature has invited us to share her deepest secrets.

    CMB Planck ESA
    Cosmic Background from ESA/Planck

    All forms of matter and energy come in quanta — the “particles” of particle physics. For the first time, we have now detected a quantum behavior of space and time. The new result invokes an interplay among all the scales of physical universe, from the smallest to largest, from the beginning to the present day. It spectacularly confirms many of the “inner space/outer space” connections pioneered over several decades by Fermilab’s astrophysics theory group. This includes the amazing idea that quantum fluctuations can be amplified to enormous size by cosmic expansion and lead not only to gravitational waves, but ultimately to the formation of all cosmic structures, including galaxies, stars, planets and life.

    The now discovered polarization of cosmic background light displays a faint but distinctive pattern of swirls that can be created only by an extraordinarily exotic process known as inflation, a stretching of space-time (gravitational waves), caused by its own subatomic, quantum fluctuations. This unique signature reaches us intact across all the vast stretches of space since the beginning of time and can now be studied in precise detail.

    The discovery, published in this paper, came sooner than anyone expected. Theorists, including Fermilab’s Albert Stebbins, proposed long ago the possibility of isolating the distinctive swirling signature used to make the discovery, but everyone was surprised this week that the signal in the real universe is so strong. The implications for cosmology are immediate and profound. We now know far more reliably what conditions were during the cosmic inflation that created our expansion; for example, the new data directly measures how fast things were expanding back then. We can now delve much more concretely into the new physics that governs cosmic origins and how it connects to the unification of the Standard Model particles and forces studied at the Tevatron and the LHC. Cosmic polarization experiments may even provide real data addressing the quantum system underlying unification of the Standard Model with gravity — the “theory of everything.”

    sm
    The Standard Model of elementary particles, with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    Fermilab Tevatron
    Tevatron

    CERN LHC
    Inside the LHC

    The discovery was inspired by theory but propelled in recent years by new transformational technology, in particular, a new generation of sensors being developed at Argonne, Berkeley, Jet Propulsion Laboratory and NIST. Large focal plane arrays of antennas are fabricated on silicon wafers, together with superconducting detectors that achieve quantum-noise-limited performance. In experiments, they are deployed in advanced telescopes at the world’s best site for peering deep into space, the South Pole.

    The newly discovered effect is strong enough to confirm soon with other experiments, perhaps even using data already obtained. The next step will be to improve the quality of the measurements with a larger area of sky, more frequency bands and higher angular resolution. That will require larger focal planes with more detection elements and a larger telescope.

    We are already developing this next-generation experiment. It will use the world’s leading facility for cosmic background studies, the South Pole Telescope (SPT). As part of a new joint effort with Argonne, the University of Chicago and other partners, Fermilab is playing a central role in developing and building the new SPT-3G cryogenic camera system, an order of magnitude more capable than that currently deployed. Over the next two years, the system will be assembled, integrated and tested at Fermilab by a team led by Brad Benson, using many of the facilities previously developed for the Dark Energy Camera and the QUIET polarization experiment, before being shipped to the South Pole.

    South Pole Telescope
    South Pole Telescope

    Fermilab DECam
    DECam

    Plans are also under way for an even more ambitious fourth-generation cosmic microwave background polarization experiment, by a larger consortium of national labs and universities. A recent APS Community Summer Study (“Snowmass“) report, co-led by Fermilab’s Scott Dodelson, identified such an experiment, in synergy with other surveys, as a unique opportunity to study many aspects of new physics, including neutrino masses, new relativistic species (so-called dark radiation) and dark energy. A study group proposes to expand CMB polarization capabilities by another order of magnitude beyond SPT-3G, including the addition of more telescopes to access more of the sky not visible from the South Pole. The new discovery extends and enriches the science reach of this enterprise to a new and deeper level — one we had hardly dared to dream about until this week.

    See the full article here.

    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics.


    ScienceSprings is powered by MAINGEAR computers

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 356 other followers

%d bloggers like this: