Tagged: H.E.S.S. Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:28 am on April 7, 2013 Permalink | Reply
    Tags: , , , , , H.E.S.S.   

    From H.E.S.S.: “Disentangling TeV emission in complex regions: the Scutum arm tangent 

    HESS Cherenko Array

    April 2013
    No Writer Credit

    “With increasing statistics of data and improved analysis methods, many of the extended H.E.S.S. gamma ray sources can be resolved into finer structures or even multiple sources. A nice example is a study of the region of Scutum arm tangent. The Scutum arm is one of the spiral arms of our Galaxy, and from the solar system one looks along the tangent of arm, at Galactic Longitude around 30 deg., with sources located along the arm piling up…

    scu

    scu
    Composite image of the source C region of HESS J1843-033: in red the radio image (from the VLA survey) showing a radio-galaxy candidate and a small fraction of a putative supernova remnant shell at the left, in blue the Chandra image, showing the diffuse emission coincident with the northern lobe, which is likely to be a pulsar wind nebula because of its morphology and spectrum.

    Applying analysis techniques to optimize angular resolution, the extended gamma-ray emission of the source HESS J1843-033 can be resolved into three significant gamma ray sources labeled source A, B, C. Source A is an extended source, source B is consistent with a point source, and source C is marginally extended. Below source B another faint hotspot starts to emerge.

    he
    Top: The Scutum arm tangent as seen in the H.E.S.S. Galactic Plane Survey (in Galactic coordinates). Bottom: Zoom into the HESS J1843-033 region, using a gamma-ray analysis optimized for best angular resolution, and applying minimal smoothing of the image (image in RA-Dec coordinates, rotated compared to the survey image). The three sources have significances in excess of 8 sigma (source C), and 10 sigma (sources A, B). Source A is extended with a size of 0.15 degr., source B is consistent with a point source, and source C is marginally extended.”

    See the full article with much more data here.

    The High Energy Stereoscopic System

    H.E.S.S. is a system of Imaging Atmospheric Cherenkov Telescopes that investigates cosmic gamma rays in the energy range from 10s of GeV to 10s of TeV. The name H.E.S.S. stands for High Energy Stereoscopic System, and is also intended to pay homage to Victor Hess , who received the Nobel Prize in Physics in 1936 for his discovery of cosmic radiation. The instrument allows scientists to explore gamma-ray sources with intensities at a level of a few thousandths of the flux of the Crab nebula (the brightest steady source of gamma rays in the sky). H.E.S.S. is located in Namibia, near the Gamsberg mountain, an area well known for its excellent optical quality. The first of the four telescopes of Phase I of the H.E.S.S. project went into operation in Summer 2002; all four were operational in December 2003, and were officially inaugurated on September 28, 2004. A much larger fifth telescope – H.E.S.S. II – is operational since July 2012, extending the energy coverage towards lower energies and further improving sensitivity.

    crab
    Crab nebula


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 10:18 am on December 14, 2012 Permalink | Reply
    Tags: , , , , , H.E.S.S.   

    From CERN COURIER: HESS II is officially inaugurated The world’s largest Cherenkov telescope 

    Nov 27, 2012

    HESS II, located in the Khomas Highlands of Namibia, was officially inaugurated on 28 September, two months after it saw first light (CERN Courier October 2012 p39). Werner Hofmann of the Max Planck Institute for Nuclear Physics, Heidelberg, and spokesperson of the HESS collaboration, opened the ceremony with a brief presentation on HESS II, which was followed by messages from representatives of key collaborating institutes and agencies. HESS II has a 28-meter mirror and weighs in at almost 600 tons. Originally, H.E.S.S. had four telescopes, each with a mirror just under 12 meters in diameter

    HESS II

    HESS Cherenko Array

    H.E.S.S. is a system of Imaging Atmospheric Cherenkov Telescopes that investigates cosmic gamma rays in the energy range from 10s of GeV to 10s of TeV. The name H.E.S.S. stands for High Energy Stereoscopic System, and is also intended to pay homage to Victor Hess , who received the Nobel Prize in Physics in 1936 for his discovery of cosmic radiation. The instrument allows scientists to explore gamma-ray sources with intensities at a level of a few thousandths of the flux of the Crab nebula (the brightest steady source of gamma rays in the sky). H.E.S.S. is located in Namibia, near the Gamsberg mountain, an area well known for its excellent optical quality. The first of the four telescopes of Phase I of the H.E.S.S. project went into operation in Summer 2002; all four were operational in December 2003, and were officially inaugurated on September 28, 2004. A much larger fifth telescope – H.E.S.S. II – is operational since July 2012, extending the energy coverage towards lower energies and further improving sensitivity.

    The H.E.S.S. observatory is operated by the collaboration of more than 170 scientists, from 32 scientific institutions and 12 different countries: Namibia and South Africa, Germany, France, the UK, Ireland, Austria, Poland, the Czech Republic, Sweden, Armenia, and Australia. To date, the H.E.S.S. Collaboration has published over 100 articles in high-impact scientific journals, including the top-ranked Nature and Science journals.”

    See the full article here.


    ScienceSprings is powered by MAINGEAR computers

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 377 other followers

%d bloggers like this: