Tagged: Fermilab muon g-2 Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:10 pm on December 9, 2014 Permalink | Reply
    Tags: , , , Fermilab muon g-2, ,   

    From FNAL: “Digging begins for Muon g-2 and Mu2e beamlines” 


    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    Tuesday, Dec. 9, 2014
    Rich Blaustein

    This month construction has commenced on beamline tunnel extensions for Fermilab’s two muon experiments, Mu2e and Muon g-2.

    2
    A team of physicists from all over the world, including postdocal researchers and graduate and undergraduate students, are working together to design, test, and build the Mu2e experiment. The Mu2e Collaboration is comprised of over one hundred physicists and continues to grow.

    w
    Mu2e will have the ability to indirectly probe energy scales well beyond the terascale being explored at the LHC. At these higher energies the effects of new particles or new forces may become evident and may provide evidence that the four known forces that govern particle interations – the gravitational, electromagnetic, weak and strong forces – unify at some ultra-high energy. (Credit: symmetry magazine/Sandbox Studio)

    t
    The Mu2e detector is a particle physics detector embedded in a series of superconducting magnets. The magnets are designed to create a low-energy muon beam that can be stopped in a thin aluminum stopping target. The magnets also provide a constant magnetic field in the detector region that allows the momentum of the conversion electrons to be accurately determined. These superconducting magnets are big. The first, to the left, is about 12 feet long at 4.5 Tesla; the middle, S-shaped section about 40 feet along the curve at about 2 Tesla, and the third about 30 ft long and almost six feet across at 1 Tesla. The Earth’s field, for comparison, is 0.0006 Tesla.
    (Credit: symmetry magazine)

    g2
    Muon g-2 (pronounced gee minus two) will use Fermilab’s powerful accelerators to explore the interactions of short-lived particles known as muons with a strong magnetic field in “empty” space. Scientists know that even in a vacuum, space is never empty. Instead, it is filled with an invisible sea of virtual particles that—in accordance with the laws of quantum physics—pop in and out of existence for incredibly short moments of time. Scientists can test the presence and nature of these virtual particles with particle beams traveling in a magnetic field.

    In the area of the current Delivery Ring (the former Antiproton Debuncher), southwest of the Booster, the existing beam tunnel will be extended approximately 200 feet, at which point it will branch in two separate directions. The Muon g-2 tunnel, about 75 feet long, will terminate in the MC-1 Building, which houses the experiment’s muon storage ring. The Mu2e tunnel, around 550 feet long, will head toward a new building to be constructed for the experiment. Construction is expected to take one year. The start of the construction of the Mu2e building is planned for 2015.

    g
    Fermilab has begun construction on new beamlines for its muon programs, Muon g-2 and Mu2e. Image: Fermilab

    Digging for the tunnels began this month. Part of Kautz Road will become permanently inaccessible, with a detour from South Booster Road and Indian Creek Road serving as the new road.

    Fermilab Accelerator Division physicist Mary Convery, who oversees the Muon Campus program, coordinated the tunnel designs with Tom Lackowski, project manager; Rod Jedziniak, project design coordinator; and Tim Trout, project construction coordinator, all of FESS.

    The primary challenge in constructing the beamlines will be in accommodating fixed features and structures, both man-made and natural.

    “The locations of the g-2 and Mu2e buildings were fairly fixed because there are already utility corridors underground,” Convery said. “There are also wetlands that we are trying not to disturb.”

    Convery said that these physical constraints were important considerations in designing the experiments’ beamlines, since the space available to accomplish the necessary beam manipulations was limited.

    “It is not only the geometry of the beamlines that we have to conform to,” Lackowski said. “We also have to make sure the many services — the cable trays and the water services for cooling — are all coordinated.”

    Because the two muon experiments use the same beamlines at different energies, they cannot be run simultaneously.

    For both experiments, protons will proceed through the Linac, course through the Booster and then travel through the Recycler. A set of beamlines connects the Recycler to the Muon Campus. For the Muon g-2 experiment, the proton beam hits a target, converting the beam to a mixture of pions, protons and muons. The particles circle the Muon Delivery Ring several times, where protons are then removed and the remaining pions decay into muons. When the Muon g-2 experiment is taking data, the muon beam will continue to the experiment in the MC-1 Building.

    In contrast, for the Mu2e experiment, the protons bypass the target station and are transported to the Delivery Ring. The Mu2e protons also circle the Delivery Ring, then continue as an all-proton beam to the target in the Mu2e building area.

    Convery says work is also being done on other technical upgrades, such as installing magnets, along the beamline route.

    She expects the Muon g-2 experiment to begin in 2017, with Mu2e starting later, as scheduled.

    “Fermilab people have worked together for many years on various beamline projects,” Lackowski said. “We have had a very tight relationship with Mary and other colleagues, so we believe the Muon Campus tunnel project will go well.”

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics.

     
  • richardmitnick 8:45 pm on August 5, 2014 Permalink | Reply
    Tags: , Fermilab muon g-2, , , ,   

    From SLAC: “Rebooted Muon Experiment Tests Detector Design at SLAC” 


    SLAC Lab

    August 5, 2014
    Last year, a monster magnet set out from Brookhaven National Lab on an epic, 35-day trek by land and sea to its new home at Fermilab, where it will serve as the heart of a search for evidence of new subatomic particles. Last month, with much less fanfare, researchers came to the End Station Test Beam (ESTB) facility at the Department of Energy’s SLAC National Accelerator Laboratory to test the eyes and nerves of the same experiment: a cutting-edge design for a new detector.

    mag
    Muon g-2 magnet to be transported to Fermilab.

    The goal of the experiment, called Muon g-2 (pronounced gee-minus-two), is to precisely measure a property of muons by studying the way their spins precess, or wobble like a slowing top, in the grip of a powerful magnet. Researchers can track this spin by observing the muon’s decay into electrons, their lighter, longer-lived siblings.

    In the experiment’s original incarnation at Brookhaven, researchers discovered the spin rate is a tiny bit different from what theory says it should be – a difference that could indicate the influence of unknown virtual particles that pop into existence from the vacuum, affect the muons, and disappear once more.

    However, the researchers at Brookhaven weren’t able to measure the property precisely enough to know for sure. That prompted the relocation of the experiment – including the headline-grabbing move of the giant ring magnet – to Fermilab, with its more powerful muon beam.

    More Muons = More Data

    To take advantage of more muons, and thus more data, a team led by University of Washington physicist David Hertzog developed a new detector design for the experiment, a novel combination of lead-fluoride crystals and silicon photomultiplier chips that they hope will capture more information about the escaping electrons.

    Hertzog and his colleagues brought some of the crystals and silicon chips to SLAC’s ESTB facility, where electrons from the linear accelerator could stand in for the results of muon decays – but controlled and easily tracked muon decays, unlike what the detectors will face during the actual experiment.

    “These detectors will need to catch a tremendous number of muon decays, pinpointing their times and the energies of the electrons,” Hertzog said. “The electrons at ESTB can be delivered one at a time and with known energies, so we can see how the crystals and silicon photomultipliers respond.”

    The tests at ESTB have been much more low-key than the magnet’s 3200-mile trek, but Hertzog said his team can also look back at a successful venture.

    “This experiment has been really enjoyable,” Hertzog said. “We’ve got good data and our system seems to be working well.”

    See the full article here.

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.
    i1

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 3:57 pm on January 29, 2014 Permalink | Reply
    Tags: , Fermilab muon g-2, ,   

    From Fermilab: “Muon g-2 experiment earns CD-1 approval” 


    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    Wednesday, Jan. 29, 2014
    Andre Salles

    2013 was a big year for the Muon g-2 experiment.

    Over the summer, the 52-foot-wide electromagnet that forms the core of the experiment was transported from New York to Illinois in a flurry of publicity. Construction began on the building that will house that device and should be completed in the next couple of months.

    m2
    The Department of Energy recently gave the Muon g-2 experiment approval to proceed to the next phase of design. Photo: Cindy Arnold

    And in December, the Department of Energy granted Critical Decision 1 approval to the experiment, marking a major milestone and charting the path forward.

    Chris Polly, project manager for Muon g-2, said this approval process was the first time that DOE officials have reviewed the entire scope of the experiment, from the design to the cost to the timeline. In order to get to this stage, the collaboration developed a 500-page report, designing and costing every element of the project and then laying those elements out in a schedule consisting of 1,500 activities spanning four years.

    “It was an incredible amount of work that required everyone on the collaboration to really focus, thoroughly think through the whole experiment and document it all for the reviewers,” Polly said.

    The reviewers were pleased with the work and only had a few recommendations. Most notably, the committee suggested that the experiment team work with the DOE to develop an accelerated schedule.

    The review took place in September, and the intervening months were spent working out the timeline and funding profile. The work that had already been done to transport the electromagnet and begin construction of the MC-1 Building helped convince the reviewers that the team could keep to such a schedule.

    “CD-1 approval is a very important milestone for the experiment, and we appreciate all the strong support that we received from DOE and the laboratory management in getting us to this point,” said Lee Roberts, co-spokesperson for the experiment.

    The Muon g-2 collaboration received more good news this month as well: The omnibus budget bill signed into law on Jan. 17 includes funding to continue the design and begin construction of the experiment. (That funding is not explicitly spelled out in the bill but is covered.)

    2014 will be another big year with the reassembly of the storage ring in its new home, the development of detectors for the experiment and the start of construction for the muon source. And this summer the Muon g-2 team will undergo the next step in the approval process, an extensive CD-2 review.

    See the full article here.

    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics.


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 9:24 am on July 26, 2013 Permalink | Reply
    Tags: , , Fermilab muon g-2, , , , ,   

    From Symmetry: “Giant electromagnet arrives at Fermilab” 

    July 26, 2013
    Laura Dattaro

    The 50-foot-wide electromagnet for the Muon g-2 experiment has completed its five-week journey from New York to Illinois.

    rting
    Photo by Reidar Hahn, Fermilab

    For the last three nights, a big rig has traveled slowly down the roads of suburban Illinois bearing an American flag and the warning sign “Oversize Load.” The warning may have been an understatement. Its ‘load’ was a 50-foot, 17-ton electromagnet that, for the last month, has voyaged by land and by sea from Brookhaven National Laboratory on Long Island. Early this morning, it reached its final destination: Fermi National Accelerator Laboratory outside of Chicago. The electromagnet arrived accompanied by an impressive entourage: a dozen state trooper cars and more than a handful of county sheriffs and local police, plus crews from a company called Roadsafe, which was tasked with removing roadside signs ahead of the convoy and righting them after it passed. It will make its final move across the laboratory site this afternoon. The logistics of the move have captured imaginations all along the way. But underneath the spectacle is important, potentially groundbreaking science. The electromagnet is part of what is known as the Muon g-2 experiment. Scientists on the Muon g-2 experiment study short-lived particles called muons, which wobble when placed in a magnetic field due to an internal conflict between some of their characteristics. In 2001, Brookhaven scientists used the ring to measure that wobble. Taking into consideration their current understanding of physics, scientists can predict what it should be like. If it turns out to be different than expected, it could indicate the presence of new physics.

    con
    Conveyance

    conveyance
    Conveyance

    In the first iteration of this experiment, Brookhaven physicists found hints that the wobble was off. Relocating the experiment to Fermilab will allow it to run in a more intense particle beam (for less money than it would cost to build the experiment anew), giving a more precise answer. ‘We’ve been trying for years to really determine whether we’ve discovered something new and exciting,’ says Muon g-2 Spokesperson Lee Roberts, who began working on the experiment in 1984. ‘We’re all excited to see the answer. It’s exciting for me personally, and it’s exciting for science.’ To relocate the magnet, the Muon g-2 team worked for over a year with Emmert International, a company that subsists on moving big, unwieldy objects, to plan the journey, which involved constructing a bright red fixture to hold the ring in place (prompting many observers along the way to compare it to a UFO). The ring is an exquisitely sensitive device; it cannot be bent or twisted by more than a few millimeters. ‘This is one of the widest, most fragile, dimensionally unusual, temperamental projects we’ve done,’ says Terry Emmert, owner of Emmert International. ‘It’s amazing to see it all come together.’

    The ring will complete its cross-country trip later today, but its second chance at searching for new physics has just begun.”

    See the full article here.

    Symmetry is a joint Fermilab/SLAC publication.



    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 6:52 am on January 11, 2013 Permalink | Reply
    Tags: , , , Fermilab muon g-2, , ,   

    From Symmetry: “Midwest muon experiments carry on East Coast legacy” 

    As researchers across the United States—and around the world—plan two new supersymmetry-hunting experiments to be located at Fermilab, symmetry writer Joseph Piergrossi sat down with collaborators from Boston University to learn more about the projects’ goals and history.

    jp
    Joseph Piergrossi, General Science Writer, Journalist and Educator

    January 10, 2013
    Joseph Piergrossi

    This spring, scientists at Fermi National Accelerator Laboratory [Fermilab] will break ground on the buildings for a Muon Campus. The two initial experiments proposed for the campus draw on three decades of technological advances to turn muons into supersensitive probes for physics beyond the Standard Model

    Standard Model
    Standard Model (w/Higgs)

    “With the Muon g-2 experiment, scientists aim to discover signs of subatomic particles and forces that have eluded detection by other experiments. It will be more sensitive to virtual or hidden particles and forces than any previous experiment of its kind. The Mu2e experiment will test a fundamental symmetry of the quantum world.

    Muon g-2 (pronounced g minus two), the first experiment to be installed in the new Muon Campus at Fermilab, has its roots in a muon experiment of the same name that ran from 1997 to 2001 at Brookhaven National Laboratory. ‘The muon is very sensitive to the hidden presence of new physics,’ says Lee Roberts, professor of physics at Boston University and co-spokesperson for the Muon g-2 experiment.

    The Brookhaven Muon g-2 experiment had its inception in 1982, when Yale physicist Vernon Hughes suggested an experiment to measure the magnetic dipole moment of the muon 20 times better than previous experiments run at CERN in the 1970s. He and Roberts were the co-spokespeople for the Brookhaven project and headed the design of the experiment, which eventually involved scientists from 14 institutions in five countries.

    Boston University has had a major stake in the Muon g-2 experiments at Brookhaven and now at Fermilab. In the early 1990s, the university provided the facilities to construct many important components of the muon ring. It was one of a half dozen institutions that ‘played a crucial role’ in the experiment, says Brookhaven’s Bill Morse, former resident spokesperson for the Muon g-2 project.

    m2bnl
    The Muon g-2 Experiment at BNL

    mc
    The new campus at Fermilab

    See the full article here.

    Symmetry is a joint Fermilab/SLAC publication.


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 6:15 pm on September 19, 2012 Permalink | Reply
    Tags: , , , Fermilab muon g-2   

    From Fermilab: “Second muon experiment receives Mission Need approval from DOE” 


    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    Wednesday, Sept. 19, 2012
    Kurt Riesselmann

    Fermilab’s plans for creating a Muon Campus with top-notch Intensity Frontier experiments have received a big boost. The Department of Energy has granted Mission Need approval to the Muon g-2 project, one of two experiments proposed for the new Muon Campus. The other proposed experiment, Mu2e, is a step ahead and already received the next level of DOE approval, known as Critical Decision 1.

    image
    Fermilab is reconfiguring the Debuncher ring, part of the former Antiproton Source, to create high-intensity muon beams for the Muon g-2 experiment. Earlier this year, a team of scientists successfully circulated the first muons in the Debuncher. Photo: Reidar Hahn

    image2
    This rendering shows the location of the proposed Muon Campus at Fermilab. The arrow points to the proposed site of the planned Muon g-2 experiment. Click to enlarge. Image: Muon Department/FESS

    ‘We now are officially on DOE’s roadmap,” said Lee Roberts, professor at Boston University and co-spokesperson for the roughly 100 scientists collaborating on the Muon g-2 (pronounced gee minus two) experiment. “This should make it easier to increase the size of our collaboration and foster international participation. Potential collaborators supported by the National Science Foundation or foreign funding agencies will be happy to see that we now have DOE’s official Mission Need approval.'”

    See the full article here.

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics.


    ScienceSprings is powered by MAINGEAR computers

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 378 other followers

%d bloggers like this: