Tagged: DAYA BAY Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:10 pm on August 21, 2013 Permalink | Reply
    Tags: , DAYA BAY, , ,   

    From Berkeley Lab: “New Results from Daya Bay – Tracking the Disappearance of Ghostlike Neutrinos” 


    Berkeley Lab

    Daya Bay neutrino experiment releases high-precision measurement of subatomic shape shifting and new result on differences among neutrino masses

    August 21, 2013
    Lynn Yarris (510) 486-5375 lcyarris@lbl.gov

    “The international Daya Bay Collaboration has announced new results about the transformations of neutrinos – elusive, ghostlike particles that carry invaluable clues about the makeup of the early universe. The latest findings include the collaboration’s first data on how neutrino oscillation – in which neutrinos mix and change into other “flavors,” or types, as they travel – varies with neutrino energy, allowing the measurement of a key difference in neutrino masses known as mass splitting.

    ‘Understanding the subtle details of neutrino oscillations and other properties of these shape-shifting particles may help resolve some of the deepest mysteries of our universe,’ said Jim Siegrist, Associate Director of Science for High Energy Physics at the U.S. Department of Energy (DOE), the primary funder of U.S. participation in Daya Bay.

    U.S. scientists have played essential roles in planning and running of the Daya Bay experiment, which is aimed at filling in the details of neutrino oscillations and mass hierarchy that will give scientists new ways to test for violations of fundamental symmetries. For example, if scientists detect differences in the way neutrinos and antineutrinos oscillate that are beyond expectations, it would be a sign of charge-parity (CP) violation, one of the necessary conditions that resulted in the predominance of matter over antimatter in the early universe. The new results from the Daya Bay experiment about mass-splitting represent an important step towards understanding how neutrinos relate to the structure of our universe today.

    ‘Mass splitting represents the frequency of neutrino oscillation,’ says Kam-Biu Luk of the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), the Daya Bay Collaboration’s Co-spokesperson, who identified the ideal site for the experiment. ‘Mixing angles, another measure of oscillation, represent the amplitude. Both are crucial for understanding the nature of neutrinos.’ Luk is a senior scientist in Berkeley Lab’s Physics Division and a professor of physics at the University of California (UC) Berkeley.

    The Daya Bay Collaboration, which includes more than 200 scientists from six regions and countries, is led in the U.S. by DOE’s Berkeley Lab and Brookhaven National Laboratory (BNL). The Daya Bay Experiment is located close to the Daya Bay and Ling Ao nuclear power plants in China, 55 kilometers northeast of Hong Kong. The latest results from the Daya Bay Collaboration will be announced at the XVth International Workshop on Neutrino Factories, Super Beams and Beta Beams in Beijing, China.

    li8nes
    The Daya Bay Neutrino Experiment is designed to provide new understanding of neutrino oscillations that can help answer some of the most mysterious questions about the universe. Shown here are the photomultiplier tubes in the Daya Bay detectors. (Photo by Roy Kaltschmidt)

    ‘These new precision measurements are a great indication that our efforts will pay off with a deeper understanding of the structure of matter and the evolution of the universe – including why we have a universe made of matter at all,’ says Steve Kettell, a Senior Scientist at BNL and U.S. Daya Bay Chief Scientist.”

    See the full article here.

    A U.S. Department of Energy National Laboratory Operated by the University of California

    University of California Seal

    DOE Seal


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 3:34 pm on March 21, 2012 Permalink | Reply
    Tags: , DAYA BAY, , ,   

    From isgtw: “A new kind of neutrino transformation” 

    isgtw

    Linda Vu
    March 21, 2012

    “Neutrinos, the wispy particles that flooded the universe in the earliest moments after the Big Bang, are continually produced in the hearts of stars and other nuclear reactions. Untouched by electromagnetism, they respond only to the weak nuclear force and even weaker gravity, passing mostly unhindered through everything from planets to people.

    Years ago scientists also discovered another hidden talent of neutrinos. Although they come in three basic “flavors”—electron, muon and tau—neutrinos and their corresponding antineutrinos can transform from one flavor to another while they are traveling close to the speed of light. How they do this has been a long standing mystery.

    But some new, and unprecedentedly precise, measurements from the multinational Daya Bay Neutrino Experiment are revealing how electron antineutrinos “oscillate” into different flavors as they travel. This new finding from Daya Bay opens a gateway to a new understanding of fundamental physics and may eventually solve the riddle of why there is far more ordinary matter than antimatter in the universe today.

    The international collaboration of researchers is made possible by advanced networking and computing facilities. In the U.S., the Department of Energy’s high-speed science network, ESnet, speeds data to the National Energy Research Scientific Computing Center (NERSC) where it is analyzed, stored and made available to researchers via the Web. Both facilities are located at the DOE’s Lawrence Berkeley National Laboratory (Berkeley Lab).”

    daya
    Daya Bay Neutrino Facility in China. Photo by: Roy Kaltschmidt, Lawrence Berkeley National Laboratory.

    See the full article here.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 328 other followers

%d bloggers like this: