Tagged: Cosmology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:40 pm on September 15, 2014 Permalink | Reply
    Tags: , , , Cosmology,   

    From The Dark Energy Survey: “Distant Wanderer” 

    Dark Energy Icon
    The Dark Energy Survey

    Dark Energy Detectives

    No Date
    Det. D. Gerdes

    After a great journey, a long-hidden member of our solar system has returned. Not since the 9th century, when Charlemagne ruled as Emperor of the Holy Roman Empire and Chinese culture flourished under the Tang Dynasty, has this small icy world re-entered the realm of the outer planets.

    wandersr

    This distant wanderer is among first of its kind discovered with data from the Dark Energy Survey (DES). Now officially known as 2013 TV158, it first came into view on October 14, 2013, and has been observed several dozen more times over the following 10 months as it slowly traces the cosmic path laid out for it by Newton’s law of gravitation. We see this small object move in the animation to the left, comprised of a pair of images taken two hours apart in August, 2014.

    It takes almost 1200 years for 2013 TV158 to orbit the sun, and it is probably a few hundred kilometers across – about the length of the Grand Canyon.

    In eight more years, it will make its closest approach to the sun – still a billion kilometers beyond Neptune. At this distance, the sun would shine with less than a tenth of a percent of its brightness here on earth, and would appear no larger than a dime seen from a hundred feet away.

    That’s what high noon looks like on 2013 TV158.

    Then it will begin its six-century outbound journey, slowly fading from the view of even the most powerful telescopes, eventually reaching a distance of nearly 30 billion kilometers before pirouetting toward home again sometime in the 27th century.

    This object is just one of countless tiny worlds that inhabit the frozen outer region of the solar system called the Kuiper Belt, an expanse 20 times as wide and many times more massive than the asteroid belt between Mars and Jupiter. The dwarf planet Pluto also calls the Kuiper Belt its home. The orbits of Jupiter, Pluto and 2013 TV158 around the sun can be seen in the image to the lower right.

    kb
    Known objects in the Kuiper belt, derived from data from the Minor Planet Center. Objects in the main belt are colored green, whereas scattered objects are colored orange. The four outer planets are blue. Neptune’s few known trojans are yellow, whereas Jupiter’s are pink. The scattered objects between Jupiter’s orbit and the Kuiper belt are known as centaurs. The scale is in astronomical units. The pronounced gap at the bottom is due to difficulties in detection against the background of the plane of the Milky Way.

    Scientists believe that these Kuiper Belt Objects, or KBOs, are relics from the formation of the solar system, cosmic leftovers that never merged into one of the larger planets. By studying them, we can gain a better understanding of the processes that gave birth to the solar system 4.5 billion years ago.

    image
    Because they are so distant and faint, KBOs are extremely difficult to detect. The first KBO, Pluto, was discovered in 1930. Sixty-two years would pass before astronomers found the next one. Astronomers have identified well over half a million objects in the main asteroid belt between Mars and Jupiter. To date, we know of only about 1500 KBOs.

    DES is designed to peer far beyond our galaxy, to find millions of galaxies and thousands of supernovae, but it can also do much more. DES records images of ten specific patches of the sky each week between August and February. These images are a perfect hunting ground for KBOs, which move slowly enough that they can stay in the same field of view for weeks or even months. This allows us to look for objects that appear in different places on different nights, and eventually track the orbit over many nights of observations.

    So far we’ve searched less than one percent of the DES survey area for new KBOs. Who knows what other distant new worlds will wander into view?

    Det. D. Gerdes

    Dark Energy Camera
    CTIO Victor M Blanco 4m Telescope
    CTIO Victor M Blanco 4m Telescope interior
    The Dark Energy camera, DECam, built at Fermilab, and its home, the Victor M.Blanco 4m Telescope in Chile

    See the full article here.

    The Dark Energy Survey (DES) is designed to probe the origin of the accelerating universe and help uncover the nature of dark energy by measuring the 14-billion-year history of cosmic expansion with high precision. More than 120 scientists from 23 institutions in the United States, Spain, the United Kingdom, Brazil, and Germany are working on the project. This collaboration [has built] an extremely sensitive 570-Megapixel digital camera, DECam, and will mount it on the Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory high in the Chilean Andes. Starting in Sept. 2012 and continuing for five years, DES will survey a large swath of the southern sky out to vast distances in order to provide new clues to this most fundamental of questions.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 10:45 am on September 15, 2014 Permalink | Reply
    Tags: , , , , , Cosmology,   

    From Astrobiology: “Planets with Oddball Orbits Like Mercury Could Host Life” 

    Astrobiology Magazine

    Astrobiology Magazine

    Sep 15, 2014
    Charles Q. Choi

    mercury
    On Mercury a solar day is about 176 Earth days long. During its first Mercury solar day in orbit the MESSENGER spacecraft imaged nearly the entire surface of Mercury to generate a global monochrome map at 250 meters per pixel resolution and a 1 kilometer per pixel resolution color map. Credit: NASA/JHU APL/CIW

    Mercury has an oddball orbit — it takes longer for it to rotate on its axis and complete a day than it takes to orbit the sun and complete a year. Now, researchers suggest photosynthesis could take place on an alien planet with a similarly bizarre orbit, potentially helping support complex life.

    However, the scientists noted that the threat of prolonged periods of darkness and cold on these planets would present significant challenges to life, and could even potentially freeze their atmospheres. They detailed their findings in the International Journal of Astrobiology.

    Astronomers have discovered more than 1,700 alien planets in the past two decades, raising the hope that at least some might be home to extraterrestrial life. Scientists mostly focus the search for alien life on exoplanets in the habitable zones of stars. These are regions where worlds would be warm enough to have liquid water on their surfaces, a potential boon to life.

    spin
    The 3:2 spin orbit resonance of Mercury and the Sun. Credit: Wikicommons

    Although many exoplanets are potentially habitable, they may differ from Earth significantly in one or more ways. For instance, habitable planets around dim red dwarf stars orbit much closer than Earth does to the Sun, sometimes even closer than Mercury’s distance. Red dwarfs are of interest as possible habitats for life because they are the most common stars in the universe — if life can exist around red dwarfs, then life might be very common across the cosmos. Recent findings from NASA’s Kepler Space Observatory suggest that at least half of all red dwarfs host rocky planets that are one-half to four times the mass of Earth.

    NASA Kepler Telescope
    NASA/Kepler

    Since a planet in the habitable zone of a red dwarf orbits very near its star, it experiences much stronger gravitational tidal forces than Earth does from the Sun, which slows the rate at which those worlds spin. The most likely result of this slowdown is that the planet enters what is technically called a 1:1 spin orbit resonance, completing one rotation on its axis every time it completes one orbit around its star. This rate of rotation means that one side of that planet will always face toward its star, while the other side will permanently face away, just as the Moon always shows the same side to Earth. One recent study suggests that such “tidally locked” planets may develop strange lobster-shaped oceans basking in the warmth of their stars on their daysides, while the nightsides of such worlds are mostly covered in an icy shell.

    However, if a habitable red dwarf planet has a very eccentric orbit — that is, oval-shaped — it could develop what is called a 3:2 spin orbit resonance, meaning that it rotates three times for every two orbits around its star. Mercury has such an unusual orbit, which can lead to strange phenomena. For instance, at certain times on Mercury, an observer could see the Sun rise about halfway and then reverse its course and set, all during the course of one mercurial day. Mercury itself is not habitable, since it lacks an atmosphere and experiences temperatures ranging from 212 to 1,292 degrees Fahrenheit (100 to 700 degrees Celsius).

    “If the Sun were less intense, Mercury would be within the habitable zone, and therefore life would have to adapt to strange light cycles,” said lead study author Sarah Brown, an astrobiologist at the United Kingdom Center for Astrobiology in Edinburgh, Scotland.

    Light is crucial for photosynthesis, the process by which plants and other photosynthetic organisms use the Sun’s rays to create energy-rich molecules such as sugars. Most life on Earth currently depends on photosynthesis or its byproducts in one way or the other, and while primitive life can exist without photosynthesis, it may be necessary for more complex multi-cellular organisms to emerge because the main source for oxygen on Earth comes from photosynthetic life, and oxygen is thought to be necessary for multi-cellular life to arise.

    To see what photosynthetic life might exist on a habitable red dwarf planet with an orbit similar to Mercury’s, scientists calculated the amount of light that reached all points on its surface. Their model involved a planet the same mass and diameter as the Earth with a similar atmosphere and amount of water on its surface. The red dwarf star was 30 percent the Sun’s mass and 1 percent as luminous, giving it a temperature of about 5,840 degrees Fahrenheit (3,225 degrees Celsius) and a habitable zone extending from 10 to 20 percent of an astronomical unit (AU) from the star. (One AU is the average distance between Earth and the Sun.)

    spin
    The 1:1 spin orbit resonance of Earth and the Moon. Credit: Wikicommons

    The scientists found that the amount of light the surface of these planets received concentrated on certain bright spots. Surprisingly, the amount of light these planets receive do not just vary over latitude as they do on Earth, where more light reaches equatorial regions than polar regions, but also varied over longitude. Were photosynthetic life to exist on worlds with these types of orbits, “one would expect to find niches that depend on longitude and latitude, rather than just latitude,” said study co-author Alexander Mead, a cosmologist at the Royal Observatory, Edinburgh, in Scotland.

    The research team found these planets could experience nights that last for months. This could pose major problems for photosynthetic life, which depends on light. Still, the scientists noted that many plants can store enough energy to last through 180 days of darkness. Moreover, some photosynthetic microbes spend up to decades dormant in the dark, while others are mixotrophic, which means they can survive on photosynthesis when light is abundant and switch to devouring food when light is absent.

    Another problem these long spans of darkness pose for life is the cold, which could freeze the atmospheres of these planets. Still, the investigators note that heat can flow from the dayside of such a planet to its nightside and prevent this freezing if that planet’s atmosphere is sufficiently dense and can trap infrared light from the planet’s star. This heat flow could lead to very strong winds, but this does not necessarily make the world uninhabitable, they added.

    “Life having to cope with such tidally driven resonances could be common in the universe,” Mead said. “It changes one’s perception of what habitable planets in the Universe would be like. There are many possibilities that are very un-Earth-like.”

    big
    It is difficult to form Mercury in solar system simulations, suggesting that some of our assumptions about the small planet’s formation might be wrong, a new study suggests. NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

    However, the researchers noted that the strength of a world’s magnetic field depends in large part on how quickly it spins, which suggests that planets with orbits like Mercury’s might have relatively weak magnetic fields. This could mean these worlds are not as good at deflecting harmful electrically charged particles streaming from their red dwarfs and other stars that can damage organisms and strip off the atmospheres of these planets.

    The investigators suggested that dense atmospheres could help keep such planets habitable in the face of radiation from space. They added that life might be confined to certain spots on the surfaces of those planets that experience relatively safe levels of radiation.

    Are astronomers capable of detecting habitable planets with a 3:2 spin orbit resonance?

    “Measuring the day length of extrasolar planets is enormously difficult, and the first day length measurements for any extrasolar planets were only published this year,” Mead said. “Such a measurement for the planets we discuss would be much more difficult due to the fact that they are small, rocky planets around faint stars. This means that we are probably a long way from measuring the spin rates of such habitable worlds.”

    Another problem these long spans of darkness pose for life is the cold, which could freeze the atmospheres of these planets. Still, the investigators note that heat can flow from the dayside of such a planet to its nightside and prevent this freezing if that planet’s atmosphere is sufficiently dense and can trap infrared light from the planet’s star. This heat flow could lead to very strong winds, but this does not necessarily make the world uninhabitable, they added.

    “Life having to cope with such tidally driven resonances could be common in the universe,” Mead said. “It changes one’s perception of what habitable planets in the Universe would be like. There are many possibilities that are very un-Earth-like.”

    It is difficult to form Mercury in solar system simulations, suggesting that some of our assumptions about the small planet’s formation might be wrong, a new study suggests. NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

    It is difficult to form Mercury in solar system simulations, suggesting that some of our assumptions about the small planet’s formation might be wrong, a new study suggests. NASA/Johns Hopkins University

    However, the researchers noted that the strength of a world’s magnetic field depends in large part on how quickly it spins, which suggests that planets with orbits like Mercury’s might have relatively weak magnetic fields. This could mean these worlds are not as good at deflecting harmful electrically charged particles streaming from their red dwarfs and other stars that can damage organisms and strip off the atmospheres of these planets.

    The investigators suggested that dense atmospheres could help keep such planets habitable in the face of radiation from space. They added that life might be confined to certain spots on the surfaces of those planets that experience relatively safe levels of radiation.

    Are astronomers capable of detecting habitable planets with a 3:2 spin orbit resonance?

    “Measuring the day length of extrasolar planets is enormously difficult, and the first day length measurements for any extrasolar planets were only published this year,” Mead said. “Such a measurement for the planets we discuss would be much more difficult due to the fact that they are small, rocky planets around faint stars. This means that we are probably a long way from measuring the spin rates of such habitable worlds.”

    See the full article here.

    NASA

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 9:11 am on September 15, 2014 Permalink | Reply
    Tags: , , , Cosmology,   

    From Hubble: “An interacting colossus” 

    NASA Hubble Telescope

    Hubble

    This picture, taken by the NASA/ESA Hubble Space Telescope’s Wide Field Planetary Camera 2 (WFPC2), shows a galaxy known as NGC 6872 in the constellation of Pavo (The Peacock). Its unusual shape is caused by its interactions with the smaller galaxy that can be seen just above NGC 6872, called IC 4970. They both lie roughly 300 million light-years away from Earth.

    NASA Hubble WFPC2
    WFPC2 since retired

    ngc6872
    NGC6872 and IC4970
    Image credit: ESA/Hubble & NASA Acknowledgement: Judy Schmidt (geckzilla.com)

    From tip to tip, NGC 6872 measures over 500 000 light-years across, making it the second largest spiral galaxy discovered to date. In terms of size it is beaten only by NGC 262, a galaxy that measures a mind-boggling 1.3 million light-years in diameter! To put that into perspective, our own galaxy, the Milky Way, measures between 100 000 and 120 000 light-years across, making NGC 6872 about five times its size.

    The upper left spiral arm of NGC 6872 is visibly distorted and is populated by star-forming regions, which appear blue on this image. This may have been be caused by IC 4970 recently passing through this arm — although here, recent means 130 million years ago! Astronomers have noted that NGC 6872 seems to be relatively sparse in terms of free hydrogen, which is the basis material for new stars, meaning that if it weren’t for its interactions with IC 4970, NGC 6872 might not have been able to produce new bursts of star formation.

    A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by contestant Judy Schmidt.

    See the full article here.

    Another view

    ngc6872
    Source http://www.eso.org/gallery/v/ESOPIA/Galaxies/phot-20b-99-hires.jpg.html
    This image is a three-colour composite, this time reproduced from one blue (B), one green-yellow (V) and one red (R) exposure, obtained [by ESO/VLT] with FORS1 at ANTU in the morning of March 29, 1999.
    ESO FORS1
    ESO/FORS

    The field size is again 6.8×6.8 arcmin 2. It shows the spectacular barred spiral galaxy NGC 6872 that is shaped like an “integral sign”. It is of type SBb and is accompanied by a smaller, interacting galaxy, IC 4970 of type S0 (just above the centre). The bright object to the lower right of the galaxies is a star in the Milky Way whose image has been strongly overexposed and exhibits multiple optical reflections in the telescope and instrument. There are also many other, fainter and more distant galaxies of many different forms in the field. They are particularly well visible on the “Normal” and “Full Resolution” versions of the photo. The upper left spiral arm of NGC 6872 is significantly disturbed and is populated by a plethora of blueish objects, many of which are star-forming regions. This may have been be caused by a recent passage of IC 4970 through it. This interesting system is located in the southern constellation Pavo (The Peacock). It is comparatively distant, almost 300 million light-years away. It extends over more than 7 arcmin in the sky and its real size from tip to tip is thus nearly 750,000 light-years. It is in fact one of the largest known, barred spiral galaxies. In order to image all of this extraordinary object within the available field of the FORS1 camera, the instrument was rotated so that the galaxy extends along the diagonal. For this reason, the orientation is such that North is to the upper right and East is to the upper left.

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 8:35 pm on September 14, 2014 Permalink | Reply
    Tags: , , , , , Cosmology,   

    From Astrobiology: “NASA Research Gives Guideline for Future Alien Life Search” 

    Astrobiology Magazine

    Astrobiology Magazine

    Sep 13, 2014
    At NASA
    William Steigerwald
    NASA’s Goddard Space Flight Center, Greenbelt, Maryland

    Gabriela Frias
    Universidad Nacional Autonoma de Mexico, Mexico City

    Astronomers searching the atmospheres of alien worlds for gases that might be produced by life can’t rely on the detection of just one type, such as oxygen, ozone, or methane, because in some cases these gases can be produced non-biologically, according to extensive simulations by researchers in the NASA Astrobiology Institute’s Virtual Planetary Laboratory.

    two
    Left: Ozone molecules in a planet’s atmosphere could indicate biological activity, but ozone, carbon dioxide and carbon monoxide — without methane, is likely a false positive. Right: Ozone, oxygen, carbon dioxide and methane — without carbon monoxide, indicate a possible true positive. Image Credit: NASA

    The researchers carefully simulated the atmospheric chemistry of alien worlds devoid of life thousands of times over a period of more than four years, varying the atmospheric compositions and star types.

    “When we ran these calculations, we found that in some cases, there was a significant amount of ozone that built up in the atmosphere, despite there not being any oxygen flowing into the atmosphere,” said Shawn Domagal-Goldman of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This has important implications for our future plans to look for life beyond Earth.”

    Methane is a carbon atom bound to four hydrogen atoms. On Earth, much of it is produced biologically (flatulent cows are a classic example), but it can also be made inorganically; for example, volcanoes at the bottom of the ocean can release the gas after it is produced by reactions of rocks with seawater.

    Ozone and oxygen were previously thought to be stronger biosignatures on their own. Ozone is three atoms of oxygen bound together. On Earth, it is produced when molecular oxygen (two oxygen atoms) and atomic oxygen (a single oxygen atom) combine, after the atomic oxygen is created by other reactions powered by sunlight or lightning. Life is the dominant source of the molecular oxygen on our planet, as the gas is produced by photosynthesis in plants and microscopic, single-cell organisms. Because life dominates the production of oxygen, and oxygen is needed for ozone, both gases were thought to be relatively strong biosignatures.

    But this study demonstrated that both molecular oxygen and ozone can be made without life when ultraviolet light breaks apart carbon dioxide (a carbon atom bound to two oxygen atoms). Their research suggests this non-biological process could create enough ozone for it to be detectable across space, so the detection of ozone by itself would not be a definitive sign of life.

    “However, our research strengthens the argument that methane and oxygen together, or methane and ozone together, are still strong signatures of life,” said Domagal-Goldman. “We tried really, really hard to make false-positive signals for life, and we did find some, but only for oxygen, ozone, or methane by themselves.”

    orb
    Credit: NASA Ames/SETI Institute/JPL-Caltech

    Domagal-Goldman and Antígona Segura from the Universidad Nacional Autónoma de México in Mexico City are lead authors of a paper about this research, along with astronomer Victoria Meadows, geologist Mark Claire, and Tyler Robison, an expert on what Earth would look like as an extrasolar planet. The paper appeared in the Astrophysical Journal Sept. 10, and is available online.

    Methane and oxygen molecules together are a reliable sign of biological activity because methane doesn’t last long in an atmosphere containing oxygen-bearing molecules. “It’s like college students and pizza,” says Domagal-Goldman. “If you see pizza in a room, and there are also college students in that room, chances are the pizza was freshly delivered, because the students will quickly eat the pizza. The same goes for methane and oxygen. If both are seen together in an atmosphere, the methane was freshly delivered because the oxygen will be part of a network of reactions that will consume the methane. You know the methane is being replenished. The best way to replenish methane in the presence of oxygen is with life. The opposite is true, as well. In order to keep the oxygen around in an atmosphere that has a lot of methane, you have to replenish the oxygen, and the best way to do that is with life.”

    Scientists have used computer models to simulate the atmospheric chemistry on planets beyond our solar system (exoplanets) before, and the team used a similar model in its research. However, the researchers also developed a program to automatically compute the calculations thousands of times, so they could see the results with a wider range of atmospheric compositions and star types.

    In doing these simulations, the team made sure they balanced the reactions that could put oxygen molecules in the atmosphere with the reactions that might remove them from the atmosphere. For example, oxygen can react with iron on the surface of a planet to make iron oxides; this is what gives most red rocks their color. A similar process has colored the dust on Mars, giving the Red Planet its distinctive hue. Calculating the appearance of a balanced atmosphere is important because this balance would allow the atmosphere to persist for geological time scales. Given that planetary lifetimes are measured in billions of years, it’s unlikely astronomers will happen by chance to be observing a planet during a temporary surge of oxygen or methane lasting just thousands or even millions of years.

    It was important to make the calculations for a wide variety of cases, because the non-biological production of oxygen is subject to both the atmospheric and stellar environment of the planet. If there are a lot of gases that consume oxygen, such as methane or hydrogen, then any oxygen or ozone produced will be destroyed in the atmosphere.

    However, if the amount of oxygen-consuming gases is vanishingly small, the oxygen and the ozone might stick around for a while. Likewise, the production and destruction of oxygen, ozone, and methane is driven by chemical reactions powered by light, making the type of star important to consider as well. Different types of stars produce the majority of their light at specific colors.

    For example, massive, hot stars or stars with frequent explosive activity produce more ultraviolet light. “If there is more ultraviolet light hitting the atmosphere, it will drive these photochemical reactions more efficiently,” said Domagal-Goldman. “More specifically, different colors (or wavelengths) of ultraviolet light can affect oxygen and ozone production and destruction in different ways.”

    Astronomers detect molecules in exoplanet atmospheres by measuring the colors of light from the star the exoplanet is orbiting. As this light passes through the exoplanet’s atmosphere, some of it is absorbed by atmospheric molecules. Different molecules absorb different colors of light, so astronomers use these absorption features as unique “signatures” of the type and quantity of molecules present.

    “One of the main challenges in identifying life signatures is to distinguish between the products of life and those compounds generated by geological processes or chemical reactions in the atmosphere. For that we need to understand not only how life may change a planet but how planets work and the characteristics of the stars that host such worlds”, said Segura.

    The team plans to use this research to make recommendations about the requirements for future space telescopes designed to search exoplanet atmospheres for signs of alien life.

    “Context is key – we can’t just look for oxygen, ozone, or methane alone,” says Domagal-Goldman. “To confirm life is making oxygen or ozone, you need to expand your wavelength range to include methane absorption features. Ideally, you’d also measure other gases like carbon dioxide and carbon monoxide [a molecule with one carbon atom and one oxygen atom]. So we’re thinking very carefully about the issues that could trip us up and give a false-positive signal, and the good news is by identifying them, we can create a good path to avoid the issues false positives could cause. We now know which measurements we need to make. The next step is figuring out what we need to build and how to build it.”

    See the full article here.

    NASA

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 9:23 am on September 14, 2014 Permalink | Reply
    Tags: , , , Cosmic X-ray Background, Cosmology,   

    From phys.org: “Exploring the cosmic X-ray background” 

    physdotorg
    phys.org

    Sep 12, 2014
    Brian Koberlein

    You are likely familiar with the cosmic microwave background. This background is a thermal remnant of the big bang. Because of the expansion of the universe, this remnant energy has a temperature of about 2.7 K, which means it exists primarily in the microwave wavelengths. We see this cosmic background as a diffuse, low-energy glow of microwave radiation.

    Cosmic Background Radiation Planck
    CMB from ESA/Planck

    But there is another background that exists, known as the cosmic x-ray background. Just as the cosmic microwave background is a diffuse microwave glow, the cosmic x-ray background is a diffuse x-ray glow. You can see an image of this x-ray background in the image above. It is a false-color image, where red, green and blue represent low, medium and high x-ray energies.

    cxb
    Cosmic X-ray Background NASA/ROSAT

    NASA ROSAT staellite
    NASA/ROSAT

    Unlike the microwave background, the x-ray background is not a remnant of the big bang. Instead it is generated through several processes. Most of the background is produced by localized sources such as active galactic nuclei, but other sources are the the local bubble of interstellar media that surrounds the Sun and other stars in our local spiral arm of Orion. But there is a small portion of the background that remains unexplained.

    One of the difficulties in understanding the x-ray background is the sheer challenge of observing x-rays at high resolution. X-rays tend to penetrate materials, so you can’t simply make a mirror to focus x-rays the way we do visible light or radio waves. X-ray telescopes must have special materials to reflect x-rays, and they need to have a very long focal length.

    See the full article here.

    About Phys.org in 100 Words

    Phys.org™ (formerly Physorg.com) is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004, Phys.org’s readership has grown steadily to include 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page set-up, RSS/XML feeds, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 8:25 am on September 14, 2014 Permalink | Reply
    Tags: , , , Cosmology,   

    From SPACE.com: “How Was the Sun Formed?” 2013 Elementary but still Important for Some 

    space-dot-com logo

    SPACE.com

    January 17, 2013
    Nola Taylor Redd

    In a wide expanse of space, gravity drew dust and gas together to create the young solar system. The sun formed first from the vast material, with the planets close behind. But how did a sea of swirling particles become the brightest star in our sky?

    sun
    The Sun: Our Perfectly Average Middle Aged Star Credit: Space.com

    Although it may look empty, space is filled with gas and dust. Most of the material was hydrogen and helium, but some of it was made up of leftover remnants from the violent deaths of stars. Waves of energy traveling through space pressed clouds of such particles closer together, and gravity causes them to collapse in on themselves. As the material drew together, gravity caused it to spin. The spin caused the cloud to flatten into a disk like a pancake. In the center, the material clumped together to form a protostar that would eventually become the sun.

    The young protostar was a ball of hydrogen and helium not yet powered by fusion. Over the course of about fifty million years, the temperature and pressure of the material inside increased, jumpstarting the fusion of hydrogen that drives the sun today.

    The formation of the sun didn’t take up all of the cloud it was born from. What was left continued to orbit the star, while planets formed from the leftover material. The sun is an average-size star, not too big and not to small. Its size makes it an excellent star to orbit, as it is neither large and fast-burning nor small and dim.

    Several million years from now, the hydrogen inside of the sun will run out, and the star will swell up into a red giant with a radius extending to Earth’s orbit. The helium at its core will also be consumed. The star will never be hot enough to burn the oxygen and carbon that are left behind, so the sun will fizzle out and become a white dwarf.

    See the full article here.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 5:58 am on September 13, 2014 Permalink | Reply
    Tags: Cosmology, , , , ,   

    From SPACE.com: “Comets: Formation, Discovery and Exploration” 

    space-dot-com logo

    SPACE.com

    November 15, 2010
    Charles Q. Choi

    Comets – Overview

    A comet is an icy body that releases gas or dust. They are often compared to dirty snowballs, though recent research has led some scientists to call them snowy dirtballs. Comets contain dust, ice, carbon dioxide, ammonia, methane and more. Some researchers think comets might have originally brought some of the water and organic molecules to Earth that now make up life here.

    Comets orbit the sun, but most are believed to inhabit in an area known as the Oort Cloud,

    oort
    Artists rendering of the Kuiper Belt and Oort Cloud.

    far beyond the orbit of Pluto. Occasionally a comet streaks through the inner solar system; some do so regularly, some only once every few centuries. Many people have never seen a comet, but those who have won’t easily forget the celestial show.

    halley
    Halley’s Comet as photographed May 8, 1910, by Dr. G.W. Ritchey using the 60-inch (1.5-meter) telescope at Mount Wilson Observatory, Calif., during the comet’s last appearance. The head of the comet and the beginning of its long tail are shown. Short, straight streaks are background stars. Credit: NASA/JPL

    Physical Characteristics

    The solid nucleus or core of a comet consists mostly of ice and dust coated with dark organic material, with the ice composed mainly of frozen water but perhaps other frozen substances as well, such as ammonia, carbon dioxide, carbon monoxide and methane. The nucleus might have a small rocky core.

    As a comet gets closer to the sun, the ice on the surface of the nucleus begins turning into gas, forming a cloud known as the coma.

    coma

    Radiation from the sun pushes dust particles away from the coma, forming a dust tail, while charged particles from the sun convert some of the comet’s gases into ions, forming an ion tail. Since comet tails are shaped by sunlight and the solar wind, they always point away from the sun.

    The nuclei of most comets are thought to measure 10 miles (16 km) or less. Some comets have comas that can reach nearly 1 million miles (1.6 million kilometers) wide, and some have tails reaching 100 million miles (160 million kilometers) long.

    We can see a number of comets with the naked eye when they pass close to the sun because their comas and tails reflect sunlight or even glow because of energy they absorb from the sun. However, most comets are too small or too faint to be seen without a telescope.

    Comets leave a trail of debris behind them that can lead to meteor showers on Earth. For instance, the Perseid meteor shower occurs every year between August 9 and 13 when the Earth passes through the orbit of the Swift-Tuttle comet.

    Orbital Characteristics

    Asteroids classify comets based on the durations of their orbits around the sun. Short-period comets need roughly 200 years or less to complete one orbit, long-period comets take more than 200 years, and single-apparition comets are not bound to the sun, on orbits that take them out of the solar system. Recently, scientist have also discovered comets in the main asteroid belt — these main-belt comets might be a key source of water for the inner terrestrial planets.

    ast
    The inner Solar System, from the Sun to Jupiter. Also includes the asteroid belt (the white donut-shaped cloud), the Hildas (the orange “triangle” just inside the orbit of Jupiter), the Jupiter trojans (green), and the near-Earth asteroids. The group that leads Jupiter are called the “Greeks” and the trailing group are called the “Trojans” (Murray and Dermott, Solar System Dynamics, pg. 107).

    Scientists think short-period comets, also known as periodic comets, originate from a disk-shaped band of icy objects known as the Kuiper belt beyond Neptune’s orbit, with gravitational interactions with the outer planets dragging these bodies inward, where they become active comets. Long-period comets are thought to come from the nearly spherical Oort cloud even further out, which get slung inward by the gravitational pull of passing stars.

    Some comets, called sun-grazers, smash right into the sun or get so close that they break up and evaporate.

    Naming

    In general, comets are named after their discoverer, either a person. For example, comet Shoemaker-Levy 9 got its name because it was the ninth short-periodic comet discovered by Eugene and Carolyn Shoemaker and David Levy. Spacecraft have proven very effective at spotting comets as well, so the names of many comets incorporate the names of missions such as SOHO or WISE.

    NASA SOHO
    NASA/SOHO

    NASA Wise Telescope
    NASA/WISE

    mc
    Comet McNaught C/2009 R1 was visible on June 6, 2010. Credit: Michael Jäger


    Formation

    Astronomers think comets are leftovers from the gas, dust, ice and rocks that initially formed the solar system about 4.6 billion years ago.

    Comet Life Cycle
    Departure
    Some comets are not bound to the sun, on orbits that take them out of the solar system.

    Extinction

    Comets lose ice and dust each time they come near the sun, leaving behind trails of debris. Eventually, they can lose all their ices, with some turning into fragile, inactive objects similar to asteroids.

    Breakup

    Other comets, upon losing all their ices, break up and dissipate into clouds of dust.

    Collisions

    The orbits comets take sometimes end with them colliding with planets and their moons. Many impact craters seen in the solar system were caused by such collisions.

    History

    In antiquity, comets inspired both awe and alarm, “hairy stars” resembling fiery swords that appeared unpredictably in the sky. Often, comets seemed to be omens of doom — the most ancient known mythology, the Babylonian “Epic of Gilgamesh,” described fire, brimstone, and flood with the arrival of a comet, and Emperor Nero of Rome saved himself from the “curse of the comet” by having all possible successors to his throne executed. This fear was not just limited to the distant past — in 1910, people in Chicago sealed their windows to protect themselves from what they thought was the comet’s poisonous tail.

    For centuries, scientists thought comets traveled in the Earth’s atmosphere, but in 1577, observations made by Danish astronomer Tycho Brahe revealed they actually traveled far beyond the moon. Isaac Newton later discovered that comets move in elliptical, oval-shaped orbits around the Sun, and correctly predicted that they could return again and again.

    Chinese astronomers kept extensive records on comets for centuries, including observations of Halley’s Comet going back to at least 240 BC, historic annals that have proven valuable resources for later astronomers.

    A number of recent missions have ventured to comets.NASA’s Deep Impact collided an impactor into Comet Tempel 1 in 2005 and recorded the dramatic explosion that revealed the interior composition and structure of the nucleus. In 2009, NASA announced samples the Stardust mission returned from Comet Wild 2 revealed a building block of life. The European Space Agency’s Rosetta is scheduled to orbit Comet Churyumov-Gerasimenko in 2014 and deploy a probe to make the first landing on a comet.

    deep
    NASA/Deep Impact

    NASA Stardust spacecraft
    NASA/Stardust

    Famous Comets

    Halley’s Comet is likely the most famous comet in the world, even depicted in the Bayeux Tapestry that chronicled the Battle of Hastings of 1066. It becomes visible to the naked eye every 76 years when it nears the sun. When Halley’s Comet zoomed near Earth in 1986, five spacecraft flew past it and gathered unprecedented details, coming close enough to study its nucleus, which is normally concealed by the comet’s coma. The roughly potato-shaped, nine-mile-long (15 km) contains equal part ice and dust, with some 80 percent of the ice made of water and about 15 percent of it consisting of frozen carbon monoxide. Researchers believe other comets are chemically similar to Halley’s Comet. The nucleus of Halley’s Comet was unexpectedly extremely dark black — its surface, and perhaps those of most others, is apparently covered with a black crust of dust over most of the ice, and it only releases gas when holes in this crust expose ice to the sun.

    The comet Shoemaker-Levy 9 collided spectacularly with Jupiter in 1994, with the giant planet’s gravitational pull ripping the comet apart for at least 21 visible impacts. The largest collision created a fireball that rose about 1,800 miles (3,000 km) above the Jovian cloudtops as well as a giant dark spot more than 7,460 miles (12,000 km) across — about the size of the Earth —and was estimated to have exploded with the force of 6,000 gigatons of TNT.

    A recent, highly visible comet was Hale-Bopp, which came within 122 million miles (197 million kilometers) of Earth in 1997. Its unusually large nucleus gave off a great deal of dust and gas — estimated at roughly 18 to 25 miles (30 to 40 kilometers) across — appeared bright to the naked eye.

    When Earth crosses the path of a comet, even if the comet hasn’t been around for a few years, leftover dust and ice can create increased numbers of meteors in what’s known as a meteor shower.

    See the full article here.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 2:51 pm on September 12, 2014 Permalink | Reply
    Tags: , , , Auroras, , , Cosmology,   

    From SPACE.com: ” Solar Storms Are Bombarding Earth Now, Amped-up Auroras Possible” 

    space-dot-com logo

    SPACE.com

    Two waves of solar material blown out by powerful sun eruptions this week are hitting the Earth now, and could amplify the aurora displays for observers in northern regions.

    aurora
    Images of the aurora australis and aurora borealis from around the world, including those with rarer red and blue lights

    Scientists with NOAA’s Space Weather Prediction Center in Boulder, Colorado, expected the first wave of solar flare particles — unleashed by a so-called coronal mass ejection, or CME, on Monday (Sept. 8) — to reach Earth Thursday night (Sept. 11). A second wave, this one caused by a massive solar flare on Wednesday, is due to arrive between Friday and early Saturday.

    cme
    NASA Captures Image of M1 Coronal Mass Ejection April 18, 2012

    flare
    On August 31, 2012 a long prominence/filament of solar material that had been hovering in the Sun’s atmosphere, the corona, erupted out into space at 4:36 p.m. EDT

    “We do expect these storm levels to cause significant auroral displays across much of the northern U.S. on Friday night,” SWPC Director Thomas Berger told reporters on Thursday. “With clear skies currently forecast for much of these regions, this could be a good opportunity for auroral sightings.”

    The enhanced auroras would likely be most visible across the northern tier U.S. states, along the U.S.-Canada border, as well as in New England, added SWPC program coordinator William Murtagh. Clear, dark skies far from city light pollution are vital to observe any auroras.

    The first of the two solar storm waves reached Earth late Thursday right on time, space weather center officials wrote in an update late Thursday. Also on Thursday, NASA released a new video of the X1.6 solar flare from its sun-watching Solar Dynamics Observatory, showing the event in two different wavelengths.

    Coronal mass ejections are powerful eruptions of super-hot plasma than can be blown out from the sun during major solar flares. This week, the an active sunspot known as AR2158 sun fired off a moderate M4.6 solar flare on Monday, followed by a much more powerful X1.6-class flare on Wednesday, Sept. 10. X-class flares are the most powerful flares the sun experiences.

    Sunspot AR2158 is about the size of between 10 and 20 Earths, but appears to be in the process of breaking up, Berger said. The huge X1.6 solar flare may have been its swan song as it breaks down, he added.

    spot
    This NASA image shows the active sunspot AR2158, which unleashed a massive X1.6 solar flare on Sept. 10, 2014, as it appeared on Sept. 8, when it fired off a moderate M4.6 solar flare. On the right, Jupiter and Earth are superimposed to give a sense of the sunspot’s size. Credit: NASA Solar Dynamics Observatory (Little SDO)

    The two solar flares this week were accompanied by coronal mass ejections, and both were aimed at Earth. When directly aimed at Earth, the most powerful solar flares — events stronger than the X1.6 storm on Wednesday — can pose a danger to satellites and astronauts in space, and interfere with communication, navigation and even power distribution surfaces on the Earth’s surface.

    Berger said that the two CMEs from this week’s solar storms could cause some radio and GPS navigation system hiccups, as well as voltage irregularities in power grids of the northern United States, but nothing too extreme.

    “We don’t expect any unmanageable impacts to national infrastructure from these solar events at this time, but we are watching these events closely,” Berger said.

    flare
    The huge X1.6-class solar flare is seen erupting from the sun in this three-wavelength composite image captured by NASA’s Solar Dynamics Obervatory on Sept. 10, 2014. The solar flare occurred at 1:45 p.m. ET. Credit: NASA Solar Dynamics Observatory (Little SDO)

    Berger did say that it is fairly rare for two significant coronal mass ejections to hit Earth head-on at nearly the same time. A minor radiation storm was detected from the solar flares, as well as temporary radio blackouts, space weather officials said.

    Space weather officials did say that the most intriguing aspect of this week’s solar flares are their potential for boosting this weekend’s northern lights displays.

    When charged particles from solar storms reach Earth, they are funneled to the polar regions by the planet’s magnetic field and can great so-called geomagnetic storms.

    A minor G1-class storm is underway now, with levels expected to rise to a potentially strong G3-class by Saturday evening, Berger said.

    When solar particles collide with the Earth’s upper atmosphere, they let create a glow that can be visible from the ground as auroral light. In the northern regions of Earth, this glow is known as the aurora borealis, or northern lights. In the south, it is called the aurora australis, or southern lights. Significant solar flares can amplify those displays into dazzling dances of ethereal light.

    See the full article, with videos, here.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 1:45 pm on September 12, 2014 Permalink | Reply
    Tags: , , , Cosmology, ,   

    From FNAL- “Frontier Science Result: DES Dark Energy Survey discovers new trans-Neptunian objects” 


    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    Friday, Sept. 12, 2014
    David Gerdes, University of Michigan

    three
    Planet hunters, from left: Zhilu Zhang (Carleton College), David Gerdes (University of Michigan) and Ross Jennings (Carleton College)

    Ever wish you could spend your summer vacation exploring someplace cool? Undergraduate students Ross Jennings and Zhilu Zhang, both of Carleton College, got to explore one of the coolest places in the solar system when they accepted research fellowships at the University of Michigan to work with Professor David Gerdes on a search for trans-Neptunian minor planets with the Dark Energy Survey. This faraway region of the solar system, more than five billion kilometers from the sun, is populated by thousands of small, icy worlds that take centuries to complete one orbit. These trans-Neptunian objects (TNOs) are believed to be leftovers from the primordial cloud that gave birth to the solar system.

    two
    These side-by-side images show the new minor planet 2013 QO95. The circled object in the left picture is roughly 200 kilometers in size and lies just beyond Pluto. The bright star in the image is too faint to be seen with the unaided eye. Images: Dark Energy Survey

    Dark Energy Camera
    Dark Energy Camera on the Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory high in the Chilean Andes.

    CTIO Victor M Blanco 4m Telescope
    CTIO Victor M Blanco 4m Telescope interior
    CTIO Victor M Blanco 4m Telescope

    To look for TNOs in Dark Energy Survey data, Gerdes and his students examined the 10 fields that DES visits roughly every five days to search for type Ia supernovae. This search uses difference imaging software to detect transient objects such as a supernova that brightens rapidly and then fades over the next few months. But it’s also the perfect tool to find TNOs, which move from night to night against the background of fixed stars, yet slowly enough that they can stay in the same field of observation for weeks.

    Gerdes, Jennings and Zhang started with a list of nearly 100,000 observations of individual transients, then linked different combinations with trial orbits to see which ones were consistent with a TNO. As more and more points were added to each candidate orbit, the team refined their calculations and made improved predictions for additional observations. By the end of the summer, the team had discovered five new TNOs.

    The properties of the new objects reflect the rich dynamical structure of the trans-Neptunian region: One orbits the sun once for every two orbits of Neptune, and another makes two orbits for every five of Neptune. These orbital resonances protect the objects from disruptive close encounters with the giant planet. A third object has a highly elongated, 1,200-year orbit that is among the 50 longest orbital periods known. (Read more about the fourth and fifth objects.)

    In the course of this summer project, the students learned a variety of skills, from Python programming to the mechanics of submitting results for publication.

    But the most important thing, said Zhang, was this: “You need to really have a lot of enthusiasm for the research you are involved in, because there is a lot of repetition and tedious work involved in research, and it is not about discovering new things every day. However, the joy you get after you finally find something is so special that I haven’t felt anything like that before in my entire life.”

    Now that’s cool.

    See the full article here.

    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 9:28 am on September 12, 2014 Permalink | Reply
    Tags: , , , Cosmology,   

    From NASA: “First Map of Rosetta’s Comet” 

    NASA

    NASA

    Scientists have found that the surface of comet 67P/Churyumov-Gerasimenko — the target of study for the European Space Agency’s Rosetta mission — can be divided into several regions, each characterized by different classes of features. High-resolution images of the comet reveal a unique, multifaceted world.

    ESA Rosetta spacecraft
    ESA/Rosetta

    map
    This view of the “belly” and part of the “head” of comet 67P/Churyumov-Gerasimenko indicates several morphologically different regions.
    Image Credit:
    ESA/Rosetta/MPS for OSIRIS Team/MPS/UPD/LAM/IAA/SSO/INTA/UPM

    ESA’s Rosetta spacecraft arrived at its destination about a month ago and is currently accompanying the comet as it progresses on its route toward the inner solar system. Scientists have analyzed images of the comet’s surface taken by OSIRIS, Rosetta’s scientific imaging system, and defined several different regions, each of which has a distinctive physical appearance. This analysis provides the basis for a detailed scientific description of 67P’s surface. A map showing the comet’s various regions is available at:

    http://go.nasa.gov/1pU26L2

    “Never before have we seen a cometary surface in such detail,” says OSIRIS Principal Investigator Holger Sierks from the Max Planck Institute for Solar System Science (MPS) in Germany. In some of the images, one pixel corresponds to a scale of 30 inches (75 centimeters) on the nucleus. “It is a historic moment — we have an unprecedented resolution to map a comet,” he says.

    The comet has areas dominated by cliffs, depressions, craters, boulders and even parallel grooves. While some of these areas appear to be quiet, others seem to be shaped by the comet’s activity, in which grains emitted from below the surface fall back to the ground in the nearby area.

    “This first map is, of course, only the beginning of our work,” says Sierks. “At this point, nobody truly understands how the surface variations we are currently witnessing came to be.”

    As both comet 67P and Rosetta travel closer to the sun during the next few months, the OSIRIS team and other instruments on the payload will monitor the surface to look for changes. While scientists do not expect the borderlines they have identified for the comet’s different regions to vary dramatically, even subtle transformations of the surface may help to explain how cometary activity created such a breathtaking world.

    The new comet maps will offer valuable insights for members of the Rosetta team, who plan to gather in Toulouse, France, on September 13 and 14, to determine a primary and backup landing site from five candidates they previously had selected.

    The scientific imaging system, OSIRIS, was built by a consortium led by the Max Planck Institute for Solar System Research (Germany) in collaboration with Center of Studies and Activities for Space, University of Padua (Italy), the Astrophysical Laboratory of Marseille (France), the Institute of Astrophysics of Andalusia, CSIC (Spain), the Scientific Support Office of the European Space Agency (Netherlands), the National Institute for Aerospace Technology (Spain), the Technical University of Madrid (Spain), the Department of Physics and Astronomy of Uppsala University (Sweden) and the Institute of Computer and Network Engineering of the TU Braunschweig (Germany). OSIRIS was financially supported by the national funding agencies of Germany (DLR), France (CNES), Italy (ASI), Spain, and Sweden and the ESA Technical Directorate.

    Rosetta is an ESA mission with contributions from its member states and NASA. Rosetta’s Philae lander is provided by a consortium led by DLR, MPS, CNES and ASI. Rosetta will be the first mission in history to rendezvous with a comet, escort it as it orbits the sun, and deploy a lander to its surface.

    For more information on the U.S. instruments aboard Rosetta, visit:

    http://rosetta.jpl.nasa.gov

    More information about Rosetta is available at:

    http://www.esa.int/rosetta

    See the full article here.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble,
    Chandra, Spitzer ]and associated programs. NASA shares data with various national and international organizations such as from the Greenhouse Gases Observing Satellite.


    ScienceSprings is powered by MAINGEAR computers

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 322 other followers

%d bloggers like this: