Tagged: Caltech Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:58 pm on October 16, 2014 Permalink | Reply
    Tags: , , , Caltech,   

    From Caltech: “A Newborn Supernova Every Night” 

    Caltech Logo
    Caltech

    10/16/2014
    Douglas Smith

    Thanks to a $9 million grant from the National Science Foundation and matching funds from the Zwicky Transient Facility (ZTF) collaboration, a new camera is being built at Caltech’s Palomar Observatory that will be able to survey the entire Northern Hemisphere sky in a single night, searching for supernovas, black holes, near-Earth asteroids, and other objects. The digital camera will be mounted on the Samuel Oschin Telescope, a wide-field Schmidt telescope that began its first all-sky survey in 1949. That survey, done on glass plates, took nearly a decade to complete.

    Caltech Palomar Samuel Ochin Telescope
    Caltech Palomar Samuel Ochin Telescope Interior
    Samuel Ochin Telescope

    The ZTF camera’s field of view will encompass 47 square degrees, larger than 200 full moons. By contrast, the field of view of the Hubble Space Telescope is so small that a mosaic of 130 of its images of the moon would be needed to see it in its entirety. “The Hubble Space Telescope and the big ground-based telescopes see really deep but have small fields of view,” says astrophysicist Eric Bellm, a postdoctoral scholar at Caltech and ZTF’s project scientist. With its field of view, ZTF will be able to identify supernovas less than 24 hours old every single night. This quick response is critical, as the light emitted in the first few hours after a supernova explodes contains a wealth of information that cannot be retrieved later.

    “Discovery is only the first step,” says Shrinivas Kulkarni, ZTF’s principal investigator and Caltech’s John D. and Catherine T. MacArthur Professor of Astronomy and Planetary Science. “When something unusual is found, we will rapidly respond with some of the world’s most powerful telescopes,” including the Palomar Observatory’s 200-inch Hale.

    Caltech Palomar Hale Telescope
    Caltech Palomar Hale Telescope
    Caltech Palomar Hale Telescope

    In time, researchers hope, ZTF itself will be pointed at targets identified by the Laser Interferometer Gravitational-wave Observatory (LIGO), an NSF-funded project run by Caltech and MIT that is searching for gravitational waves. These ripples in the fabric of space and time are predicted to occur when neutron stars, black holes, or other massive objects collide. Currently, LIGO is offline undergoing a technical upgrade to Advanced LIGO, which is slated to begin operations in 2016. If and when Advanced LIGO registers a gravitational wave, it will command ZTF to scan the ribbon of sky from which the signal emanated, searching for any visible change that might mark the point of origin.

    ZTF—the successor to the intermediate Palomar Transient Factory (iPTF) survey and its predecessor, the Palomar Transient Factory—is a fully automated wide-field survey that uses the Oschin telescope to collect data that are then sent to the Infrared Processing and Analysis Center (IPAC) on the Caltech campus. At IPAC, software developed for PTF looks for anything that has changed between frames. ZTF will shoot one frame per minute at 18 gigabits per frame—the rough equivalent of watching eight hours of high-definition movies on Netflix every 60 seconds.

    “ZTF is really about celestial cinematography,” says Mansi Kasliwal (PhD ’11), currently a visiting associate in astronomy who will start as an assistant professor of astronomy at Caltech in September 2015. “Our new camera can make a movie of the entire sky. Moving solar-system bodies such as asteroids will just pop out at us, and we’ll be able to study catastrophic explosive transients such as supernovas and stars being torn apart by black holes.”

    “Processing so many images in real time is a huge challenge,” says IPAC’s executive director, George Helou. “It takes imaginative programming and powerful computers.” ZTF will visit every corner of the sky some 900 times over the course of its three-year observing program; IPAC will compile the data into atlases of variable stars, active galactic nuclei, and other astronomically interesting objects.

    Part of the NSF grant will fund an annual summer institute, coordinated by Pomona College in Claremont, California, to train students from across the United States in the latest astronomy instrumentation skills, large sky surveys, and data-analysis software.

    “These undergraduates will be controlling some of the largest telescopes in the world and getting a taste of the excitement of the scientific process,” explains Bryan Penprase, a professor at Pomona College and a co-principal investigator on the project, and the organizer of the summer institute. “The technology is so advanced that discoveries will be common. In just one night, the ZTF can discover hundreds of new sources. It’s an incredible thing for a student to be able to say, ‘I discovered that thing in the sky that no one else has ever seen before.'”

    The Zwicky Transient Facility is named in memory of Caltech astronomer Fritz Zwicky, who pioneered the use of wide-field Schmidt-type telescopes for sky surveys. Zwicky was the prime mover behind the Oschin’s construction, using its survey plates to hunt for supernovas—a term that Zwicky and Walter Baade coined in 1931. Zwicky also predicted the existence of neutron stars, dark matter, and gravitational lensing.

    ZTF is a public-private partnership supported by the National Science Foundation, Caltech, IPAC, the Weizmann Institute of Science (Israel), the Oskar Klein Centre (Sweden), Humboldt University (Germany), Los Alamos National Laboratory, Lawrence Berkeley National Laboratory, the Jet Propulsion Laboratory, the TANGO consortium (Taiwan), the University of Wisconsin–Milwaukee, and Pomona College. The survey will begin in 2017

    See the full article here.

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”
    Caltech buildings
    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 4:12 pm on October 16, 2014 Permalink | Reply
    Tags: , , Caltech   

    From Caltech: “Improving The View Through Tissues and Organs” 

    Caltech Logo
    Caltech

    10/16/2014
    Kimm Fesenmaier

    This summer, several undergraduate students at Caltech had the opportunity to help optimize a promising technique that can make tissues and organs—even entire organisms—transparent for study. As part of the Summer Undergraduate Research Fellowship (SURF) program, these students worked in the lab of Assistant Professor of Biology Viviana Gradinaru, where researchers are developing such so-called clearing techniques that make it possible to peer straight through normally opaque tissues rather than seeing them only as thinly sectioned slices that have been pieced back together.

    tissue
    Credit: iStock

    Gradinaru’s group recently published a paper in the journal Cell describing a new approach to tissue clearing. The method they have created builds on a technique called CLARITY that Gradinaru helped develop while she was a research associate at Stanford. CLARITY allowed researchers to, for the first time, create a transparent whole-brain specimen that could then be imaged with its structural and genetic information intact.

    CLARITY was specifically developed for studying the brain. But the new approach developed in Gradinaru’s lab, which the team has dubbed PARS (perfusion-assisted agent release in situ), can also clear other organs, such as the kidney, as well as tissue samples, such as tumor biopsies. It can even be applied to entire organisms.

    Like CLARITY, PARS involves removing the light-scattering lipids in the tissue to make samples transparent without losing the structural integrity that lipids typically provide. First the sample is infused with acrylamide monomers that are then polymerized into a hydrogel that provides structural support. Next, this tissue–hydrogel hybrid is immersed in a detergent that removes the lipids. Then the sample can be stained, often with antibodies that specifically mark cells of interest, and then immersed in RIMS (refractive index matching solution) for imaging using various optical techniques such as confocal or lightsheet microscopy.

    Over the summer, Sam Wie, a junior biology major at Caltech, spent 10 weeks in the Gradinaru lab working to find a polymer that would perform better than acrylamide, which has been used in the CLARITY hydrogel. “One of the limitations of CLARITY is that when you put the hydrogel tissue into the detergent, the higher solute concentration in the tissue causes liquid to rush into the cell. That causes the sample to swell, which could potentially damage the structure of the tissue,” Wie explains. “So I tried different polymers to try to limit that swelling.”

    Wie was able to identify a polymer that produces, over a similar amount of time, about one-sixth of the swelling in the tissue.

    “The SURF experience has been very rewarding,” Wie says. “I’ve learned a lot of new techniques, and it’s really exciting to be part of, and to try to improve, CLARITY, a method that will probably change the way that we image tissues from now on.”

    At another bench in Gradinaru’s lab, sophomore bioengineering major Andy Kim spent the summer focusing on a different aspect of the PARS technique. While antibodies have been the most common markers used to tag cells of interest within cleared tissues, they are too large for some studies—for example, those that aim to image deeper parts of the brain, requiring them to cross the blood–brain barrier. Kim’s project involved identifying smaller proteins, such as nanobodies, which target and bind to specific parts of proteins in tissues.

    “While PARS is a huge improvement over CLARITY, using antibodies to stain is very expensive,” Kim says. “However, some of these nanobodies can be produced easily, so if we can get them to work, it would not only help image the interior of the brain, it would also be a lot less costly.”

    During his SURF, Kim worked with others in the lab to identify about 30 of these smaller candidate binding proteins and tested them on PARS-cleared samples.

    While Wie and Kim worked on improving the PARS technique itself, Donghun Ryu, a third SURFer in Gradinaru’s lab, investigated different methods for imaging the cleared samples. Ryu is a senior electrical engineering and computer science major at the Gwangju Institute of Science and Technology (GIST) in the Republic of Korea.

    Last summer Ryu completed a SURF as part of the Caltech–GIST Summer Undergraduate Research Exchange Program in the lab of Changhuei Yang, professor of electrical engineering, bioengineering, and medical engineering at Caltech. While completing that project, Ryu became interested in optogenetics, the use of light to control genes. Since optogenetics is one of Gradinaru’s specialties, Yang suggested that he try a SURF in Gradinaru’s lab.

    This summer, Ryu was able to work with both Yang and Gradinaru, investigating a technique called Talbot microscopy to see whether it would be better for imaging thick, cleared tissues than more common techniques. Ryu was able to work on the optical system in Yang’s lab while testing the samples cleared in Gradinaru’s lab.

    “It was a wonderful experience,” Ryu says. “It was special to have the opportunity to work for two labs this summer. I remember one day when I had a meeting with both Professor Yang and Professor Gradinaru; it was really amazing to get to meet with two Caltech professors.”

    Gradinaru says that the SURF projects provided a learning opportunity not only for the participating students but also for her lab. “For example,” she says, “Ryu strengthened the collaboration that we have with the Yang group for the BRAIN Initiative. And my lab members benefited from the chance to serve as mentors—to see what works and what can be improved when transferring scientific knowledge. These are very important skills in addition to the experimental know-how that they master.”

    See the full article here.

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”
    Caltech buildings
    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 4:00 pm on October 10, 2014 Permalink | Reply
    Tags: , Caltech, ,   

    From Caltech: “Sensors to Simplify Diabetes Management” 

    Caltech Logo
    Caltech

    10/10/2014
    Jessica Stoller-Conrad

    For many patients diagnosed with diabetes, treating the disease can mean a burdensome and uncomfortable lifelong routine of monitoring blood sugar levels and injecting the insulin that their bodies don’t naturally produce. But, as part of their Summer Undergraduate Research Fellowship (SURF) projects at Caltech, several engineering students have contributed to the development of tiny biosensors that could one day eliminate the need for these manual blood sugar tests.

    two
    From left to right: Sagar Vaidyanathan, a visiting undergraduate researcher from UCLA, and Caltech sophomore Sophia Chen. Chen spent her summer in the laboratory of Hyuck Choo, assistant professor of electrical engineering, studying new ways to power tiny health-monitoring sensors and devices.
    Credit: Lance Hayashida/Caltech Marketing and Communications

    Because certain patients with diabetes are unable to make their own insulin—a hormone that helps transfer glucose, or sugar, from the blood into muscle and other tissues—they need to monitor frequently their blood glucose, manually injecting insulin when sugar levels surge after a meal. Most glucose monitors require that patients prick their fingertips to collect a drop of blood, sometimes up to 10 times a day for the rest of their lives.

    In their SURF projects, the students, all from Caltech’s Division of Engineering and Applied Science, looked for different ways to do these same tests but painlessly and automatically.

    man
    Senior applied physics major Mehmet Sencan has approached the problem with a tiny chip that can be implanted under the skin. The sensor, a square just 1.4 millimeters on each side, is designed to detect glucose levels from the interstitial fluid (fluid found in the spaces between cells) that is just under the skin. The glucose levels in this fluid directly relate to the blood glucose concentration.

    Sencan has been involved in optimizing the electrochemical method that the chip will use to detect glucose levels. Much like a traditional finger-stick glucose meter, the chip uses glucose oxidase, an enzyme that reacts in the presence of glucose, to create an electrical current. Higher levels of glucose result in a stronger current, allowing the device to measure glucose levels based on the charge that passes through the fluid.

    Once the glucose level is detected, the information is wirelessly transmitted via a radio wave frequency to a reader that uses the same frequency to power the device itself. Ultimately an external display will let the patient know if their levels are within range.

    Sencan, who works in the laboratory of Axel Scherer, the Bernard Neches Professor of Electrical Engineering, Applied Physics, and Physics, and who is co-mentored by postdoctoral researcher Muhammad Mujeeb-U-Rahman, started this project three years ago during his very first SURF.

    “When I started, we were just thinking about what kind of chemistry the sensor would use, and now we have a sensor that is actually designed to do that,” he says. Over the summer, he implanted the sensors in rat models, and he will continue the study over the fall and spring terms using both rat and mouse models—a first step in determining if the design is a clinically viable option.

    jun
    Junior electrical engineering major Sith Domrongkitchaiporn from the Scherer laboratory, also co-mentored by Mujeeb-U-Rahman, took a different approach to glucose detection, making tiny biosensors that are inconspicuously wearable on the surface of a contact lens. “It’s an interesting concept because instead of having to do a procedure to place something under the skin, you can use a less invasive method, placing a sensor on the eye to get the same information,” he says.

    He used the method optimized by Mehmet to determine blood glucose levels from interstitial fluid and adapted the chemistry to measure glucose in the eyes’ tears. This summer, he will be attempting to fabricate the lens itself and improve upon the process whereby radio waves are used to power the sensor and then transmit data from the sensor to an external computer.

    girl
    SURF student and sophomore electrical engineering major Jennifer Chih-Wen Lin wanted to incorporate a different kind of glucose sensor into a contact lens. “The concept—determining glucose readings from tears—is very similar to Sith’s, but the method is very different,” she says.

    Instead of determining the glucose level based on the amount of electrical current that passes through a sample, Lin, who works in the laboratory of Hyuck Choo, assistant professor of electrical engineering, worked on a sensor that detects glucose levels from the interaction between light and molecules.

    In her SURF project, she began optimizing the characterization of glucose molecules in a sample of glucose solution using a technique called Raman spectroscopy. When molecules encounter light, they vibrate differently based on their symmetry and the types of bonds that hold their atoms together. This vibrational information provides a unique fingerprint for each type of molecule, which is represented as peaks on the Raman spectrum—and the intensity of these peaks correlates to the concentration of that molecule within the sample.

    “This step is important because once I can determine the relationship between peak intensities and glucose concentrations, our sensor can just compare that known spectrum to the reading from a sample of tears to determine the amount of glucose in the sample,” she says.

    Lin’s project is in the very beginning stages, but if it is successful, it could provide a more accurate glucose measurement, and from a smaller volume of liquid, than is possible with the finger-stick method. Perhaps more importantly for patients, it can provide that measurement painlessly.

    girl12
    Also in Choo’s laboratory, sophomore electrical engineering major Sophia Chen’s SURF project involves a new way to power devices like these tiny sensors and other medical implants, using the vibrations from a patient’s vocal cords. These vibrations produce the sound of our voice, and also create vibrations in the skull.

    “We’re using these devices called energy harvesters that can extract energy from vibrations at specific frequencies. When the vibrations go from the vocal folds to the skull, a structure in the energy harvester vibrates at the same frequency, generating energy—energy that can be used to power batteries or charge things,” Chen says.

    Chen’s goal is to determine the frequency of these vibrations—and if the energy that they produce is actually enough to power a tiny device. The hope is that one day these vibrations could power, or at least supplement the power of, medical devices that need to be implanted near the head and that presently run on batteries with finite lifetimes.

    Chen and the other students acknowledge that health-monitoring sensors powered by the human body might be years away from entering the clinic. However, this opportunity to apply classroom knowledge to a real-life challenge—such as diabetes treatment—is an important part of their training as tomorrow’s scientists and engineers.

    See the full article here.

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”
    Caltech buildings
    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 3:50 pm on September 22, 2014 Permalink | Reply
    Tags: , , , Caltech,   

    From Caltech: “Variability Keeps The Body In Balance” 

    Caltech Logo
    Caltech

    09/22/2014
    Jessica Stoller-Conrad

    Although the heart beats out a very familiar “lub-dub” pattern that speeds up or slows down as our activity increases or decreases, the pattern itself isn’t as regular as you might think. In fact, the amount of time between heartbeats can vary even at a “constant” heart rate—and that variability, doctors have found, is a good thing.

    runner

    Reduced heart rate variability (HRV) has been found to be predictive of a number of illnesses, such as congestive heart failure and inflammation. For athletes, a drop in HRV has also been linked to fatigue and overtraining. However, the underlying physiological mechanisms that control HRV—and exactly why this variation is important for good health—are still a bit of a mystery.

    By combining heart rate data from real athletes with a branch of mathematics called control theory, a collaborative team of physicians and Caltech researchers from the Division of Engineering and Applied Sciences have now devised a way to better understand the relationship between HRV and health—a step that could soon inform better monitoring technologies for athletes and medical professionals.

    The work was published in the August 19 print issue of the Proceedings of the National Academy of Sciences.

    To run smoothly, complex systems, such as computer networks, cars, and even the human body, rely upon give-and-take connections and relationships among a large number of variables; if one variable must remain stable to maintain a healthy system, another variable must be able to flex to maintain that stability. Because it would be too difficult to map each individual variable, the mathematics and software tools used in control theory allow engineers to summarize the ups and downs in a system and pinpoint the source of a possible problem.

    Researchers who study control theory are increasingly discovering that these concepts can also be extremely useful in studies of the human body. In order for a body to work optimally, it must operate in an environment of stability called homeostasis. When the body experiences stress—for example, from exercise or extreme temperatures—it can maintain a stable blood pressure and constant body temperature in part by dialing the heart rate up or down. And HRV plays an important role in maintaining this balance, says study author John Doyle, the Jean-Lou Chameau Professor of Control and Dynamical Systems, Electrical Engineering, and Bioengineering.

    “A familiar related problem is in driving,” Doyle says. “To get to a destination despite varying weather and traffic conditions, any driver—even a robotic one—will change factors such as acceleration, braking, steering, and wipers. If these factors suddenly became frozen and unchangeable while the car was still moving, it would be a nearly certain predictor that a crash was imminent. Similarly, loss of heart rate variability predicts some kind of malfunction or ‘crash,’ often before there are any other indications,” he says.

    To study how HRV helps maintain this version of “cruise control” in the human body, Doyle and his colleagues measured the heart rate, respiration rate, oxygen consumption, and carbon dioxide generation of five healthy young athletes as they completed experimental exercise routines on stationary bicycles.

    By combining the data from these experiments with standard models of the physiological control mechanisms in the human body, the researchers were able to determine the essential tradeoffs that are necessary for athletes to produce enough power to maintain an exercise workload while also maintaining the internal homeostasis of their vital signs.

    Because monitors in hospitals can already provide HRV levels and dozens of other signals and readings, the integration of such mathematical analyses of control theory into HRV monitors could, in the future, provide a way to link a drop in HRV to a more specific and treatable diagnosis. In fact, one of Doyle’s students has used an HRV application of control theory to better interpret traditional EKG signals.

    Control theory could also be incorporated into the HRV monitors used by athletes to prevent fatigue and injury from overtraining, he says.

    “Physicians who work in very data-intensive settings like the operating room or ICU are in urgent need of ways to rapidly and acutely interpret the data deluge,” says Marie Csete, MD (PhD, ’00), chief scientific officer at the Huntington Medical Research Institutes and a coauthor on the paper. “We hope this work is a first step in a larger research program that helps physicians make better use of data to care for patients.”

    “For example, the heart, lungs, and circulation must deliver sufficient oxygenated blood to the muscles and other organs while not raising blood pressure so much as to damage the brain,” Doyle says. “This is done in concert with control of blood vessel dilation in the muscles and brain, and control of breathing. As the physical demands of the exercise change, the muscles must produce fluctuating power outputs, and the heart, blood vessels, and lungs must then respond to keep blood pressure and oxygenation within narrow ranges.”

    Once these trade-offs were defined, the researchers then used control theory to analyze the exercise data and found that a healthy heart must maintain certain patterns of variability during exercise to keep this complicated system in balance. Loss of this variability is a precursor of fatigue, the stress induced by exercise. Today, some HRV monitors in the clinic can let a doctor know when variability is high or low, but they provide little in the way of an actionable diagnosis.

    Because monitors in hospitals can already provide HRV levels and dozens of other signals and readings, the integration of such mathematical analyses of control theory into HRV monitors could, in the future, provide a way to link a drop in HRV to a more specific and treatable diagnosis. In fact, one of Doyle’s students has used an HRV application of control theory to better interpret traditional EKG signals.

    See the full article here.

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”
    Caltech buildings
    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 8:15 pm on September 14, 2014 Permalink | Reply
    Tags: , , Caltech   

    From Caltech: “Slimy Fish and the Origins of Brain Development” 

    Caltech Logo
    Caltech

    09/14/2014
    Jessica Stoller-Conrad

    Lamprey—slimy, eel-like parasitic fish with tooth-riddled, jawless sucking mouths—are rather disgusting to look at, but thanks to their important position on the vertebrate family tree, they can offer important insights about the evolutionary history of our own brain development, a recent study suggests.

    eel
    A sea lamprey held by postdoctoral scholar Stephen Green in the Caltech Zebrafish/Xenopus/Lamprey Facility. Credit: Lance Hayashida/Caltech Marketing and Communications

    The work appears in a paper in the September 14 advance online issue of the journal Nature.

    “Lamprey are one of the most primitive vertebrates alive on Earth today, and by closely studying their genes and developmental characteristics, researchers can learn more about the evolutionary origins of modern vertebrates—like jawed fishes, frogs, and even humans,” says paper coauthor Marianne Bronner, the Albert Billings Ruddock Professor of Biology and director of Caltech’s unique Zebrafish/Xenopus/Lamprey facility, where the study was done.

    mb
    Marianne Bronner, the Albert Billings Ruddock Professor of Biology, with the tanks where the sea lamprey are kept during their time at Caltech.
    Credit: Lance Hayashida/Caltech Marketing and Communications

    The facility is one of the few places in the world where lampreys can be studied in captivity. Although the parasitic lamprey are an invasive pest in the Great Lakes, they are difficult to study under controlled conditions; their lifecycle takes up to 10 years and they only spawn for a few short weeks in the summer before they die.

    Each summer, Bronner and her colleagues receive shipments of wild lamprey from Michigan just before the prime of breeding season. When the lamprey arrive, they are placed in tanks where the temperature of the water is adjusted to extend the breeding season from around three weeks to up to two months. In those extra weeks, the lamprey produce tens of thousands of additional eggs and sperm, which, via in vitro fertilization, generate tens of thousands of additional embryos for study. During this time, scientists from all over the world come to Caltech to perform experiments with the developing lamprey embryos.

    tank
    Lamprey embryos are sorted for observation at a microscope in the Caltech Zebrafish/Xenopus/Lamprey facility.
    Credit: Lance Hayashida/Caltech Marketing and Communications

    In the current study, Bronner and her collaborators—who traveled to Caltech from Stower’s Institute for Medical Research in Kansas City, Missouri—studied the origins of the vertebrate hindbrain.

    The hindbrain is a part of the central nervous system common to chordates—or organisms that have a nerve cord like our spinal cord. During the development of vertebrates—a subtype of chordates that have backbones—the hindbrain is compartmentalized into eight segments, each of which becomes uniquely patterned to establish networks of neuronal circuits. These segments eventually give rise to adult brain regions like the cerebellum, which is important for motor control, and the medulla oblongata, which is necessary for breathing and other involuntary functions.

    br
    A lamprey embryo expressing the Hox gene Hoxb3 (green). In the study, Bronner and her colleagues found that Hox genes are important for hindbrain segmentation during lamprey development.
    Credit: Hugo Parker

    However, this segmentation is not present in so-called “invertebrate chordates”—a grouping of chordates that lack a backbone, such as sea squirts and lancelets.

    “The interesting thing about lampreys is that they occupy an intermediate evolutionary position between the invertebrate chordates and the jawed vertebrates,” says Hugo Parker, a postdoc at Stower’s Institute and first author on the study. “By investigating aspects of lamprey embryology, we can get a picture of how vertebrate traits might have evolved.”

    hp
    Hugo Parker, a postdoctoral scholar from the Stowers Institute for Medical Research, works with lamprey embryos at a microscope in the Caltech Zebrafish/Xenopus/Lamprey facility.
    Credit: Lance Hayashida/Caltech Marketing and Communications

    In the vertebrates, segmental patterning genes called Hox genes help to determine the animal’s head-to-tail body plan—and those same Hox genes also control the segmentation of the hindbrain. Although invertebrate chordates also have Hox genes, these animals don’t have segmented hindbrains. Because lampreys are centered between these two types of organisms on the evolutionary tree, the researchers wanted to know whether or not Hox genes are involved in patterning of the lamprey hindbrain.

    To their surprise, the researchers discovered that the lamprey hindbrain was not only segmented during development but the process also involved Hox genes—just like in its jawed vertebrate cousins.

    “When we started, we thought that the situation was different, and the Hox genes were not really integrated into the process of segmentation as they are in jawed vertebrates,” Parker says. “But in actually doing this project, we discovered the way that lamprey Hox genes are expressed and regulated is very similar to what we see in jawed vertebrates.” This means that hindbrain segmentation—and the role of Hox genes in this segmentation—happened earlier on in evolution than was once thought, he says.

    Parker, who has been spending his summers at Caltech studying lampreys since 2008, is next hoping to pinpoint other aspects of the lamprey hindbrain that may be conserved in modern vertebrate information that will help contribute to a fundamental understanding of vertebrate development. And although those investigations will probably mean following the lamprey for a few more summers at Caltech, Parker says his time in the lamprey facility continually offers a one-of-a-kind experience.

    “The lamprey system here is unique in the world—and it’s not just the water tanks and how we’ve learned to maintain the animals. It’s the small nucleus of people who have particular skills, people who come in from all over the world to work together, share protocols, and develop the field together,” he says. “That’s one of the things I’ve liked ever since I first came here. I really felt like I was a part of something very special.

    These results were published in a paper titled A Hox regulatory network of hindbrain segmentation is conserved to the base of vertebrates. Robb Krumlauf, a scientific director at the Stower’s Institute and professor at the Kansas University Medical Center, was also a coauthor on the study. The Zebrafish/Xenopus/Lamprey facility at Caltech is a Beckman Institute facility.

    See the full article here.

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”
    Caltech buildings
    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 2:41 pm on August 20, 2014 Permalink | Reply
    Tags: , , Caltech,   

    From Caltech: “Programmed to Fold: RNA Origami” 

    Caltech Logo
    Caltech

    08/20/2014
    Katie Neith

    Researchers from Aarhus University in Denmark and Caltech have developed a new method for organizing molecules on the nanoscale. Inspired by techniques used for folding DNA origami—first invented by Paul Rothemund, a senior research associate in computation and neural systems in the Division of Engineering and Applied Science at Caltech—the team, which includes Rothemund, has fabricated complicated shapes from DNA’s close chemical cousin, RNA.

    Unlike DNA origami, whose components are chemically synthesized and then folded in an artificial heating and cooling process, RNA origami are synthesized enzymatically and fold up as they are being synthesized, which takes place under more natural conditions compatible with living cells. These features of RNA origami may allow designer RNA structures to be grown within living cells, where they might be used to organize cellular enzymes into biochemical factories.

    “The parts for a DNA origami cannot easily be written into the genome of an organism. An RNA origami, on the other hand, can be represented as a DNA gene, which in cells is transcribed into RNA by a protein machine called RNA polymerase,” explains Rothemund.

    So far, the researchers have demonstrated their method by designing RNA molecules that fold into rectangles and then further assemble themselves into larger honeycomb patterns. This approach was taken to make the shapes recognizable using an atomic force microscope, but many other shapes should be realizable.

    fold
    This illustration is an artist’s impression of RNA nanostructures that fold up while they are being synthesized by polymerase enzymes, which read instructions from DNA templates. Once formed, the RNAs assemble into honeycomb-shaped lattices on the mica surface below. Credit: Cody Geary

    A paper describing the research appears in the August 15 issue of the journal Science.

    “What is unique about the method is that the folding recipe is encoded into the molecule itself, through its sequence.” explains first author Cody Geary, a postdoctoral scholar at Aarhus University.

    In other words, the sequence of the RNAs defines both the final shape, and the order in which different parts of the shape fold. The particular RNA sequences that were folded in the experiment were designed using software called NUPACK, created in the laboratory of Caltech professor Niles Pierce. Both the Rothemund and Pierce labs are funded by a National Science Foundation. Molecular Programming Project (MPP) Expeditions in Computing grant.

    “Our latest research is an excellent example of how tools developed by one part of the MPP are being used by another,” says Rothemund.

    “RNA has a richer structural and functional repertoire than DNA, and so I am especially interested in how complex biological motifs with special 3-D geometries or protein-binding regions can be added to the basic architecture of RNA origami,” says Geary, who completed his BS in chemistry at Caltech in 2003.

    The project began with an extended visit by Geary and corresponding author Ebbe Andersen, also from Aarhus University, to Rothemund’s Caltech lab.

    “RNA origami is still in its infancy,” says Rothemund. “Nevertheless, I believe that RNA origami, because of their potential to be manufactured by cells, and because of the extra functionality possible with RNA, will have at least as big an impact as DNA origami.”

    Rothemund (BS ’94) reported the original method for DNA origami in 2006 in the journal Nature. Since then, the work has been cited over 6,000 times and DNA origami have been made in over 50 labs worldwide for potential applications such as drug delivery vehicles and molecular computing.

    “The payoff is that unlike DNA origami, which are expensive and have to be made outside of cells, RNA origami should be able to be grown cheaply in large quantities, simply by growing bacteria with genes for them,” he adds. “Genes and bacteria cost essentially nothing to share, and so RNA origami will be easily exchanged between scientists.”

    See the full article here.

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”
    Caltech buildings
    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 4:52 pm on August 1, 2014 Permalink | Reply
    Tags: , , Caltech,   

    From Caltech: “Biology Made Simpler With ‘Clear’ Tissues” 

    Caltech Logo
    Caltech

    08/01/2014
    Jessica Stoller-Conrad

    In general, our knowledge of biology—and much of science in general—is limited by our ability to actually see things. Researchers who study developmental problems and disease, in particular, are often limited by their inability to look inside an organism to figure out exactly what went wrong and when.

    Now, thanks to techniques developed at Caltech, scientists can see through tissues, organs, and even an entire body. The techniques offer new insight into the cell-by-cell makeup of organisms—and the promise of novel diagnostic medical applications.

    mass
    A 3-D visualization of fluorescently-labeled brain cells within an intact brain tissue. Through the use of this novel whole-body clearing and staining method, researchers can make an organism’s tissues transparent—allowing them to look through the tissues of an organism for specific cells that have been labeled or stained.
    Credit: Bin Yang and Viviana Gradinaru/Caltech

    “Large volumes of tissue are not optically transparent—you can’t see through them,” says Viviana Gradinaru, an assistant professor of biology at Caltech and the principal investigator whose team has developed the new techniques, which are explained in a paper appearing in the journal Cell. Lipids throughout cells provide structural support, but they also prevent light from passing through the cells. “So, if we need to see individual cells within a large volume of tissue”—within a mouse kidney, for example, or a human tumor biopsy—”we have to slice the tissue very thin, separately image each slice with a microscope, and put all of the images back together with a computer. It’s a very time-consuming process and it is error prone, especially if you look to map long axons or sparse cell populations such as stem cells or tumor cells,” she says.

    The researchers came up with a way to circumvent this long process by making an organism’s entire body clear, so that it can be peered through—in 3-D—using standard optical methods such as confocal microscopy.

    The new approach builds off a technique known as CLARITY that was previously developed by Gradinaru and her collaborators to create a transparent whole-brain specimen. With the CLARITY method, a rodent brain is infused with a solution of lipid-dissolving detergents and hydrogel—a water-based polymer gel that provides structural support—thus “clearing” the tissue but leaving its three-dimensional architecture intact for study.

    The refined technique optimizes the CLARITY concept so that it can be used to clear other organs besides the brain, and even whole organisms. By making clever use of an organism’s own network of blood vessels, Gradinaru and her colleagues—including scientific researcher Bin Yang and postdoctoral scholar Jennifer Treweek, coauthors on the paper—can quickly deliver the lipid-dissolving hydrogel and chemical solution throughout the body.

    Gradinaru and her colleagues have dubbed this new technique PARS, or perfusion-assisted agent release in situ.

    Once an organ or whole body has been made transparent, standard microscopy techniques can be used to easily look through a thick mass of tissue to view single cells that are genetically marked with fluorescent proteins. Even without such genetically introduced fluorescent proteins, however, the PARS technique can be used to deliver stains and dyes to individual cell types of interest. When whole-body clearing is not necessary the method works just as well on individual organs by using a technique called PACT, short for passive clarity technique.

    To find out if stripping the lipids from cells also removes other potential molecules of interest—such as proteins, DNA, and RNA—Gradinaru and her team collaborated with Long Cai, an assistant professor of chemistry at Caltech, and his lab. The two groups found that strands of RNA are indeed still present and can be detected with single-molecule resolution in the cells of the transparent organisms.

    The Cell paper focuses on the use of PACT and PARS as research tools for studying disease and development in research organisms. However, Gradinaru and her UCLA collaborator Rajan Kulkarni, have already found a diagnostic medical application for the methods. Using the techniques on a biopsy from a human skin tumor, the researchers were able to view the distribution of individual tumor cells within a tissue mass. In the future, Gradinaru says, the methods could be used in the clinic for the rapid detection of cancer cells in biopsy samples.

    The ability to make an entire organism transparent while retaining its structural and genetic integrity has broad-ranging applications, Gradinaru says. For example, the neurons of the peripheral nervous system could be mapped throughout a whole body, as could the distribution of viruses, such as HIV, in an animal model.

    Gradinaru also leads Caltech’s Beckman Institute BIONIC center for optogenetics and tissue clearing and plans to offer training sessions to researchers interested in learning how to use PACT and PARS in their own labs.

    “I think these new techniques are very practical for many fields in biology,” she says. “When you can just look through an organism for the exact cells or fine axons you want to see—without slicing and realigning individual sections—it frees up the time of the researcher. That means there is more time to the answer big questions, rather than spending time on menial jobs.”

    See the full article here.

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”
    Caltech buildings


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 5:50 pm on July 28, 2014 Permalink | Reply
    Tags: , , , Caltech,   

    From Caltech: “TMT Construction Gets Green Light” 

    Caltech Logo
    Caltech

    07/28/2014
    Kathy Svitil

    The Hawaii Board of Land and Natural Resources has given the official green light for construction of the Thirty Meter Telescope (TMT) on the summit of Mauna Kea, home to many of the world’s premier astronomical observatories. TMT—which will be the world’s largest ground-based telescope when it begins operations in 2022 [ESO's E-ELT will be a 39m behemoth and will see first light in the early 2020's]—will shed light on fundamental questions about the characteristics of exoplanets, the birth of stars and galaxies, and the composition and expansion of the universe, among other elusive cosmic mysteries.

    Thirty Meter Telescope
    TMT

    The TMT project was conceived more than a decade ago by a group of astronomers at Caltech and other institutes as the logical follow-up to the W. M. Keck Observatory, arguably the most prominent and productive ground-based observatory in astronomy today [ the writer seems to not know about ESO's VLT in Chile].

    Keck Observatory
    Keck

    Since the TMT project’s inception, Caltech—in collaboration with the University of California and the Association of Canadian Universities for Research in Astronomy, and with major funding provided by the Gordon and Betty Moore Foundation—has been a core partner and has played a vital role in “defining the scientific objectives and technical capabilities, designing the observatory and its first-light instruments, and building the international partnership that is at the heart of this Pacific Rim observatory,” says Tom Soifer, chair of the Division of Physics, Mathematics and Astronomy. “I am very happy that we’ve made it this far,” Soifer adds. “Having been part of the building of Keck and its first science, I know the thrill of building and commissioning a new, state-of-the-art astronomy facility. I look forward to celebrating the first light of TMT in the future.”

    See the full article here.

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”
    Caltech buildings


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 10:02 am on July 23, 2014 Permalink | Reply
    Tags: , Caltech, , ,   

    From Caltech: “50 Years of Quarks” 

    Caltech Logo
    Caltech

    07/22/2014
    A Milestone in Physics

    Douglas Smith

    Caltech’s Murray Gell-Mann simplified the world of particle physics in 1964 by standing it on its head. He theorized that protons—subatomic particles as solid as billiard balls and as stable as the universe—were actually cobbled together from bizarre entities, dubbed “quarks,” whose properties are unlike anything seen in our world. Unlike protons, quarks cannot be separated from their fellows and studied in isolation; despite this, our understanding of the universe is built on their amply documented existence.

    proton
    he quark structure of the proton. (The color assignment of individual quarks is not important, only that all three colors are present.)

    mgm
    Nobel Laureate Murray Gell-Mann

    These days, the subatomic particle catalog has hundreds of entries. Back in the 1920s, there were only two—the massive proton, which had a charge of +1 and was found in the atom’s nucleus; and the electron, which had very little mass, a charge of –1, and orbited the nucleus. Every proton occupied one of two possible spin states in relation to the surrounding space. These spins could easily be flipped in a behavior described by a mathematical construct called the SU(2) symmetry group. “Quantum spin states do not have a familiar analog in everyday experience,” says Caltech’s Steven Frautschi, professor of theoretical physics, emeritus. “However, they can be turned into one another by 180-degree rotations in ordinary space, which is what SU(2) does.”

    In 1932, the neutron was discovered.

    neut
    The quark structure of the neutron. (The color assignment of individual quarks is not important, only that all three colors are present.)

    This new particle appeared to be the proton’s close relative—even its mass was the same, to within 0.2 percent—but the neutron had no electric charge. SU(2) symmetry in ordinary space could not account for the neutron’s existence, but quantum mechanic Werner Heisenberg fixed the problem by declaring that the two particles were indeed fraternal twins . . . if you took SU(2) from another point of view. Frautschi explains: “Like rotating a physical object in ordinary space, Heisenberg extended SU(2) by rotating the symmetry group in a ‘space’ that quantum theorists made up.”

    Heisenberg gave his rotation a quantum number, now called isospin, which described the particle’s interaction with the so-called strong nuclear force. (The strong force overcomes the mutual repulsion between positively charged protons, binding them and neutrons to one another and allowing stable atomic nuclei to exist.) The mathematical treatment of isospin in Heisenberg’s theoretical space was identical to that of the proton’s spin in ordinary space, allowing neutrons to turn into protons and vice versa. In the physical world, Heisenberg’s version of SU(2) is like a slowly spinning roulette wheel after the ball has come to rest—if the white ball (a proton) could transmute itself into a black ball (a neutron) and then back again to a white ball once every revolution.

    A comprehensive theory of the strong force was published three years later by Hideki Yukawa of Osaka University. Quantum-mechanical forces need particles to carry them, and Yukawa calculated that the strong-force carriers would be much more massive than electrons but not nearly as massive as protons. Soon after, in 1937, Caltech research fellow Seth Neddermeyer (PhD ’35) and Nobel laureate physics professor Carl Anderson (BS ’27, PhD ’30) stumbled upon a likely candidate: a new particle with about 200 times the electron’s mass and about one-ninth the mass of the proton.

    Although it was widely assumed that Neddermeyer and Anderson had found the force-carrying particles that would prove Yukawa’s theory, the paper announcing the discovery merely described them as “higher mass states of ordinary electrons.” This proved to be the case—the new particles, now called muons, did not behave as Yukawa had predicted but instead behaved exactly like electrons. This offered the first inkling that otherwise identical particles came in multigenerational “families” of very different masses.

    The search for Yukawa’s strong-force carriers did not bear fruit until 1947, when particles dubbed pions finally turned up…

    pion
    The quark structure of the pion.

    …as did kaons, the massive second-generation members of the pion family. These kaons, however, were oddly long-lived, lasting a quadrillion times longer than expected. (“Long-lived” is relative, as the average kaon decayed into other particles in less than a millionth of a second.)

    Then, in 1953, Murray Gell-Mann, then at the University of Chicago, and Kazuhiko Nishijima (also at Osaka University) independently demystified the kaons’ strange longevity by proposing yet another new quantum number to explain it. This number, imaginatively called “strangeness,” permits particles possessing it to decay—but only by shedding one strangeness unit at a time. This relatively slow process created stepwise cascades of successively less-strange particles, ultimately ending in particles whose strangeness is zero.

    Unfortunately, strangeness and SU(2) did not mesh mathematically. The theorists remained at an impasse; meanwhile, the experimentalists built ever-more-powerful machines that created ever-more-massive, ever-more-exotic particles whose ever-briefer existences could only be inferred by working backward from the collections of mundane particles into which they decayed.

    The mushrooming catalog of discoveries defied all attempts at organization until 1961, when Gell-Mann—who had moved to Caltech in 1955—and Israeli physicist Yuval Ne’eman independently proposed sorting particles into mini-periodic tables organized by electric charge and strangeness number. Gell-Mann dubbed his version the “Eightfold Way,” after Buddhism’s Eightfold Path to enlightenment, because the tables tended to contain eight members each.

    The Eightfold Way brought physicists full circle, as it proved to be a rotating SU(3) symmetry group. Just as charge had driven the isospin axis in Heisenberg’s SU(2) symmetry, strangeness provided a second, perpendicular rotation. In other words, SU(2) spun only around the y axis, as it were, but SU(3) spun on both the x and y axes simultaneously. It was as if the roulette wheel had morphed into a globe spinning around the poles while the polar axis itself spun around two points on the equator. Relationships between particles could be represented as rotations in isospin, in strangeness, or in both.

    Although the Eightfold Way solved one problem, it created another. Whereas SU(2) manifests itself through doublets—the proton-neutron dichotomy—SU(3)’s hallmark is the triplet. “Nature is likely to use this fundamental representation,” says physics professor Frautschi, “but there was no sign of triplets in the data.” Triplets could be conjured into existence, however, if the rock-solid proton could be broken apart. In that case, SU(3)’s fundamental triplet could be a menu of three hypothetical entities, each with its own unique set of quantum numbers.

    If the menu choices were truly independent—much like allowing a diner to order an enchilada with all beans and no rice on the side, for example—a fundamental triplet offered enough possibilities to build every massive particle known, and then some. Intermediate-mass pions and kaons would contain two menu selections; protons, neutrons, and a slew of more massive particles would be three-item combos. “It’s all about making patterns,” Frautschi explains. “You write down sets of quantum numbers, add them up, and see what fits.”

    However, the numbers refused to add up. Both the two-piece kaon and a three-piece particle called the sigma came in positive, negative, and electrically neutral versions. But if the only charges available to the triplet’s members were –1, 0, and +1, no conceivable combination of choices allowed all the other quantum numbers to come out right.

    This should have been the end of the story. Robert Millikan, Caltech’s first Nobel laureate, had won his prize for showing that electric charge came only in whole-numbered units. But in 1964, Gell-Mann and George Zweig (PhD ’64) independently flew in the face of all that was known by proposing that the fundamental triplet had one member with a +2/3 charge and two members with charges of –1/3.

    Gell-Mann called the members of his triplet “quarks,” after the sentence “Three quarks for Muster Mark!” in James Joyce’s Finnegan’s Wake. Everything found in the old SU(2) symmetry group could be fashioned from +2/3 “up” quarks and –1/3 “down” quarks, both of which had a strangeness number of zero. A proton was up-up-down, for example; a neutron was down-down-up. The other –1/3 quark had a quantum of strangeness; adding these “strange” quarks to the mix took care of the particles that SU(2) couldn’t handle. Since this proposal was so heretical, Gell-Mann presented quarks as no more than an expedient accounting system, writing, “It is fun to speculate about the way quarks would behave if they were physical particles of finite mass (instead of purely mathematical entities . . . ).”

    Zweig, meanwhile, called his theoretical constructs “aces,” as they were put together into “deuces” and “treys” to make pions and protons. He was also less circumspect than Gell-Mann. “The results . . . seem somewhat miraculous,” Zweig wrote. “Perhaps the model is . . . a rather elaborate mnemonic device. [But] there is also the outside chance that the model is a closer approximation to nature than we may think, and that fractionally charged aces abound within us.” Sadly, Zweig’s paper met a very different fate than Gell-Mann’s. Since Zweig was working as a very junior postdoctoral fellow at CERN, the European Center for Particle Physics, all his manuscripts had to be reviewed by his superiors before publication. The senior staff considered Zweig’s ideas too outré, and his paper got sent to a file room instead of a journal. He returned to Caltech soon after, joining the faculty.

    Gell-Mann went on to win the Nobel Prize for Physics in 1969—although not for the quark model per se, which was still on thin ice. (The very first experiments demonstrating that protons might contain something else had been run at the Stanford Linear Accelerator the preceding year.) Instead, he was cited “for contributions and discoveries concerning the classification of elementary particles and their interactions.”

    Quarks have since been shown to be physical particles with finite masses. The up quark has been found to have about half the mass of the down, while the strange quark has been shown to be some 50 times more massive—a sure sign that it represented a second generation of quarks, just as muons had turned out to be second-generation electrons. In 1974, the other second-generation quark turned up—the “charm” quark—followed three years later by the third-generation “bottom” quark. It then took nearly two decades to find what is called the “top” quark—which, as far as we know, completes the quark family tree.

    Gell-Mann was named the Robert Andrews Millikan Professor of Theoretical Physics in 1967—a fitting irony that the man who showed that fractional electric charges are necessary holds the chair named for the man who showed that electric charge is indivisible.

    Gell-Mann’s paper introducing the quark was all of two pages long; what has been written about quarks since then would fill warehouses. This half-century of discoveries was celebrated at a conference in the 84-year-old Gell-Mann’s honor, hosted by Caltech’s theoretical high-energy physics group in December, 2013 –

    See the full article here.

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”
    Caltech buildings


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 7:46 pm on July 17, 2014 Permalink | Reply
    Tags: , Caltech, , Quartz technology   

    From Caltech: “Future Electronics May Depend on Lasers, Not Quartz” 

    Caltech Logo
    Caltech

    07/17/2014
    Jessica Stoller-Conrad

    Nearly all electronics require devices called oscillators that create precise frequencies—frequencies used to keep time in wristwatches or to transmit reliable signals to radios. For nearly 100 years, these oscillators have relied upon quartz crystals to provide a frequency reference, much like a tuning fork is used as a reference to tune a piano. However, future high-end navigation systems, radar systems, and even possibly tomorrow’s consumer electronics will require references beyond the performance of quartz.

    three
    Vahala’s new laser frequency reference (left) is a small 6 mm disk; the quartz “tuning fork” (middle) is the frequency reference commonly used today in wristwatches to set the second. The dime (right) is for scale.
    Credit: Jiang Li/Caltech

    Now, researchers in the laboratory of Kerry Vahala, the Ted and Ginger Jenkins Professor of Information Science and Technology and Applied Physics at Caltech, have developed a method to stabilize microwave signals in the range of gigahertz, or billions of cycles per second—using a pair of laser beams as the reference, in lieu of a crystal.

    Quartz crystals “tune” oscillators by vibrating at relatively low frequencies—those that fall at or below the range of megahertz, or millions of cycles per second, like radio waves. However, quartz crystals are so good at tuning these low frequencies that years ago, researchers were able to apply a technique called electrical frequency division that could convert higher-frequency microwave signals into lower-frequency signals, and then stabilize these with quartz.

    The new technique, which Vahala and his colleagues have dubbed electro-optical frequency division, builds off of the method of optical frequency division, developed at the National Institute of Standards and Technology more than a decade ago. “Our new method reverses the architecture used in standard crystal-stabilized microwave oscillators—the ‘quartz’ reference is replaced by optical signals much higher in frequency than the microwave signal to be stabilized,” Vahala says.

    Jiang Li—a Kavli Nanoscience Institute postdoctoral scholar at Caltech and one of two lead authors on the paper, along with graduate student Xu Yi—likens the method to a gear chain on a bicycle that translates pedaling motion from a small, fast-moving gear into the motion of a much larger wheel. “Electrical frequency dividers used widely in electronics can work at frequencies no higher than 50 to 100 GHz. Our new architecture is a hybrid electro-optical ‘gear chain’ that stabilizes a common microwave electrical oscillator with optical references at much higher frequencies in the range of terahertz or trillions of cycles per second,” Li says.

    The optical reference used by the researchers is a laser that, to the naked eye, looks like a tiny disk. At only 6 mm in diameter, the device is very small, making it particularly useful in compact photonics devices—electronic-like devices powered by photons instead of electrons, says Scott Diddams, physicist and project leader at the National Institute of Standards and Technology and a coauthor on the study.

    “There are always tradeoffs between the highest performance, the smallest size, and the best ease of integration. But even in this first demonstration, these optical oscillators have many advantages; they are on par with, and in some cases even better than, what is available with widespread electronic technology,” Vahala says.

    The new technique is described in a paper that will be published in the journal Science on July 18. Other authors on this paper include Hansuek Lee, who is a visiting associate at Caltech. The work was sponsored by the DARPA’s ORCHID and PULSE programs; the Caltech Institute for Quantum Information and Matter (IQIM), an NSF Physics Frontiers Center with support of the Gordon and Betty Moore Foundation; and the Caltech Kavli NanoScience Institute.

    See the full article here.

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”
    Caltech buildings


    ScienceSprings is powered by MAINGEAR computers

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 345 other followers

%d bloggers like this: