Tagged: Basic Research Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:09 pm on October 23, 2014 Permalink | Reply
    Tags: , , Basic Research, ,   

    From Frontier Fields: “Recent Guide Star Loss with Abell 2744″ 

    Frontier Fields
    Frontier Fields

    May 30, 2014
    Patricia Royle – Frontier Fields Program Coordinator

    We have just experienced our first non-acquisition of a guide star during Frontier Fields observations. This occurred while in the midst of Abell 2744 observations.

    Abell 2744, nicknamed Pandora’s Cluster. The galaxies in the cluster make up less than five percent of its mass. The gas (around 20 percent) is so hot that it shines only in X-rays (coloured red in this image). The distribution of invisible dark matter (making up around 75 percent of the cluster’s mass) is coloured here in blue.

    Since HST is in constant motion, pointing is maintained by a set of three Fine Guidance Sensors (FGS) which find and lock on to a pair of guide stars, or a single guide star if pairs are not available. These guide stars are selected by software based on several criteria, including magnitude, relative position to other similar stars, position within the FGS “pickles” (Fields of View) and any pointing constraints on the observation such as ORIENT or POS TARGs within the Phase 2 program. Selected guide stars need to stay within the FGS pickles for the entire orbit, including all pointing changes due to POS TARGs or PATTERNs. If an observation spans more than one visibility interval, the guide stars are reacquired after each interruption either from occultation or SAA passages. A pair of guide stars provides the most accurate and stable pointing since they act as sort of handles for HST to focus on. If two stars are used in two separate FGS pickles, then HST is able to maintain almost perfect pointing throughout the observations. If only one star is used, HST may show some drift around the single star since there is not a second star to keep the telescope from rotating. More information about the accuracy of each type of guiding can be found online at http://www.stsci.edu/hst/acs/faqs/guide_star.html.

    In some cases, a guide star may fail to acquire or it might successfully acquire but can not be maintained. Sometimes this is a result of a telescope problem, but more often, it turns out that a selected guide star fails to meet one of the criteria it initially appeared to pass. This can happen in the case of a variable star, a multi-star system that previously appeared as a single star, or with the presence of a similar star (called a spoiler) nearby that confuses the FGS. When PAIRs are used, it is possible to fail to acquire one star, but succeed with the other, resulting in observations taken with single star guiding which is often good enough for most science. There may also be situations when a star is acquired initially but fails to re-acquire in a subsequent orbit, or lock may be lost on one star during an orbit. This is usually due to the star itself being at the very edge of usability and violating one of the limits set by the telescope to help ensure HST knows where it is pointing. With guide star pairs, science can usually continue as long as one of the stars is acquired. If both stars fail (very unusual) or an observation using single star guiding fails to acquire its one star, the observations default to gyro control. This is often problematic to the science as the observations are likely to show significant drift and rotation, or may be far enough off that the target is completely missed.

    During the first Frontier Fields visit observing Abell 2744 on May 14, one of the two selected guide stars failed to acquire, resulting in the observations continuing on single star guiding instead. As with all failures, the failed star was investigated and was found to be a bad star. It was flagged in the database within 24 hours of the failure, such that future observations would not attempt to use the same bad star. The second Frontier Fields visit of Abell 2744 on May 15 also failed, as it was already on the telescope and set to use the same guide star pair. Several other visits that were scheduled to execute on the telescope the following week, with the same guide star pair, were quickly reworked by the calendar-building team at STScI to use a different guide star pair. The remaining visits in the epoch not yet put on a calendar are unaffected, since the bad star is no longer an option for our software when selecting from available guide star pairs.

    Figure 1: The HST Field of View of Abell 2744, with Fine Guidance Sensors Fields of View indicated by the large, gray arcs.

    The green boxes in Figure 1 identify potential guide stars. To use guide star pairs, two stars must fall into separate FGS pickles and remain there throughout any shifts in pointing during the visit. If two similar guide stars are too close to each other, neither can be used since the FGS could lock onto the wrong star. Because of the multiple criteria involved and the need for precision, not all guide stars can be used for a given observation, even if the Field of View seems to show stars that could be used.

    The Frontier Fields data products team carried out a detailed examination of all the data from the two visits that were affected by these guidestar issues. For the first visit (number 37), only one of the guidestars was lost, while the other star was successfully acquired and the observations were able to continue in single guide star mode. Analysis of the resulting images showed no measurable impact on the pointing or the PSF quality (consistent with our knowledge that HST is able to perform successfully with a single guide star, when necessary), and all the data from this visit were included in the mosaics.

    For the second visit (number 81), the failure mode was somewhat different. The guide stars were fine during the first two orbits of this 4-orbit visit, but began to show problems during the third orbit and failed the reacquisition for the fourth orbit. Consequently, the ACS shutter was closed at the start of the fourth orbit and the fourth exposure for each filter was not obtained. As a result, we include only the first two exposures for each filter in our fast-turnaround v0.5 products, although we may include the third exposure in future versions. For WFC3/IR, all the exposures were obtained, and analysis revealed that the last exposure was offset by no more than a few tenths of an arcsecond compared to its expected location. Thus, there was no significant evidence of drift during the exposures, indicating that the telescope was able to track successfully in gyro mode during these exposures.

    So, it makes no difference. Two, one, or zero guide stars – we can do great science in any case!

    See the full article here.

    Frontier Fields draws on the power of massive clusters of galaxies to unleash the full potential of the Hubble Space Telescope. The gravity of these clusters warps and magnifies the faint light of the distant galaxies behind them. Hubble captures the boosted light, revealing the farthest galaxies humanity has ever encountered, and giving us a glimpse of the cosmos to be unveiled by the James Webb Space Telescope.

    NASA Hubble Telescope

    NASA James Webb Telescope

    ScienceSprings relies on technology from

    MAINGEAR computers



  • richardmitnick 5:14 pm on October 23, 2014 Permalink | Reply
    Tags: ARC Centre of Excellence for Particle Physics at the Terascale, Basic Research, , Grand Sasso National Laboratory   

    From Symmetry: “Australia’s first dark matter experiment” 


    October 23, 2014
    Glenn Roberts Jr.

    Physicists are hoping to hit pay dirt with a proposed experiment—the first of its kind in the Southern Hemisphere—that would search for traces of dark matter more than a half mile below ground in Victoria, Australia.

    The current plan, now being explored by an international team, is for two new, identical dark matter experiments to be installed and operated in parallel—one at an underground site at Grand Sasso National Laboratory in Italy, and the other at the Stawell Gold Mine in Australia.


    “An experiment of this significance could ultimately lead to the discovery of dark matter,” says Elisabetta Barberio of the ARC Centre of Excellence for Particle Physics at the Terascale (CoEPP) and the University of Melbourne, who is Australian project leader for the proposed experiment.

    The experiment proposal was discussed during a two-day workshop on dark matter in September. Work could begin on the project as soon as 2015 if it gathers enough support. “We’re looking at logistics and funding sources,” Barberio says.

    The experiments would be modeled after the DAMA experiment at Gran Sasso, now called DAMA/LIBRA, which in 1998 found a possible sign of dark matter.

    DAMA/LIBRA looks for seasonal modulation, an ebb and flow in the amount of potential dark matter signals it sees depending on the time of year.

    If the Milky Way is surrounded by a halo of dark matter particles, then the sun is constantly moving through it, as is the Earth. The Earth’s rotation around the sun causes the two to spend half of the year moving in the same direction and the other half moving in opposite directions. During the six months in which the Earth and sun are cooperating, a dark matter detector on the Earth will move faster through the dark matter particles, giving it more opportunities to catch them.

    This seasonal difference appears in the data from DAMA/LIBRA, but no other experiment has been able to confirm this as a sign of dark matter.

    For one thing, the changes in the signal could be caused on other factors that change by the season.

    “There are environmental effects—different characteristics of the atmosphere—in winter and summer that are clearly reversed if you go from the Northern to the Southern hemisphere,” says Antonio Masiero, vice president for the Italian National Institute of Nuclear Physics (INFN) and a member of the Italian delegation collaborating on the proposal, which also includes Gran Sasso Director Stefano Ragazzi. If the results matched up at both sites at the same time of year, that would help to rule out such effects.

    The Australian mine hosting the proposed experiment could also house scientific experiments from different fields.

    “It wouldn’t be limited to particle physics and could include experiments involving biology, geosciences and engineering,” Barberio says. “These could include neutrino detection, nuclear astrophysics, geothermal energy extraction and carbon sequestration, and subsurface imaging and sensing.”

    Preliminary testing has begun at the mine site down to depths of about 880 meters, about 200 meters above the proposed experimental site. Regular mining operations are scheduled to cease at Stawell in the next few years.

    The ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO), the local government in the Victoria area, and the mine operators have joined forces with COEPP and INFN to support the proposal.

    See the full article here.

    Symmetry is a joint Fermilab/SLAC publication.

    ScienceSprings relies on technology from

    MAINGEAR computers



  • richardmitnick 4:52 pm on October 23, 2014 Permalink | Reply
    Tags: Basic Research, ,   

    From FNAL: “UV laser calibration system installed in MicroBooNE” 

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    Thursday, Oct. 23, 2014
    Rich Blaustein

    Fermilab’s MicroBooNE experiment, expected to launch in early 2015, could very well help determine whether a hypothesized fourth neutrino — referred to as a sterile neutrino — would join the three confirmed ones. Anticipating significant, perhaps momentous, findings, Fermilab and outside collaborators are working hard to ready MicroBooNE for take-off.

    In late September, MicroBooNE collaborators installed a new ultraviolet (UV) laser calibration system in MicroBooNE’s liquid-argon detector at Fermilab. Scientists at Switzerland’s University of Bern Laboratory for High Energy Physics, a MicroBooNE collaborator, designed and built the system specifically for the project.

    Antonio Ereditato (left), head of the Laboratory for High Energy Physics at the University of Bern, and scientist Thomas Strauss, also of the University of Bern, work on MicroBooNE’s UV laser calibration system. Photo: Reidar Hahn

    “This is exciting,” said Fermilab’s Sam Zeller, MicroBooNE co-spokesperson. “This is the first time anyone has deployed such a laser system in a liquid-argon detector for a major neutrino experiment.”

    Fermilab’s MiniBooNE experiment (MicroBooNE’s predecessor) and Los Alamos National Laboratory’s Liquid Scintillator Neutrino Detector experiment raised the possibility of a fourth neutrino. However, the two experiments, while producing many cited — and some differing — results, did not have sensitive liquid-argon detectors for charting neutrino activity.

    “We are recreating that same short-beamline environment, but with MicroBooNE, which has a more capable detector,” said University of Bern’s Michele Weber, MicroBooNE physics analysis coordinator. “We now have some means to address this new neutrino question.”

    Because of the high-resolution imaging capability of liquid-argon detectors such as MicroBooNE’s, it is important to ensure and monitor their correct functioning. One of the calibration system’s goals is to check the detector’s electric field and how it transfers deposits of charge, caused by neutrino interactions with the liquid argon, to the detector’s readout wires.

    With the University of Bern’s UV laser calibration system, ultraviolet laser beams, which are reliably straight, are shot through the argon-filled chamber when the neutrino beam is not activated to test whether the detector’s critical components — wiring, electrical field — are operating maximally or are skewing data readings.

    Physicist Antonio Ereditato, who heads the University of Bern laboratory, explains that a normal visible-light laser does not have enough energy to ionize the liquid argon and create tracks similar to those caused by the neutrinos. But a laser using ultraviolet light, which is higher in energy than visible light, can do the job under specific conditions.

    “The system creates ‘artificial’ tracks that mimic the ionization tracks left by particles. In short, this ultraviolet laser system checks, monitors and calibrates the liquid-argon detector,” Ereditato said.

    “That allows us to measure possible image distortions everywhere,” Weber said. Those distortions can then be accounted for in the data.

    The laser calibration system took eight years of R&D studies to develop. The Bern team also tested it on a liquid-argon detector prototype at their lab.

    “I always joke with the Bern team that the calibration system they built is like a Swiss watch,” Zeller said. “The laser itself, like exquisite clockwork, sweeps across the detector. It is absolutely beautiful.”

    Ereditato and Weber are also very happy with the system. They feel the MicroBooNE experiment embodies the international cooperation and goodwill that bodes well for the future of particle physics.

    “This experiment, which we worked so hard on, and Fermilab’s opening their doors and recognizing our work is very satisfying,” Weber said.

    “If there is another neutrino, it could open up an entirely new particle family — so there is some exciting physics possibly around the corner,” Zeller said. “We are ready to get going.”

    See the full article here.

    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics.

    ScienceSprings relies on technology from

    MAINGEAR computers



  • richardmitnick 4:39 pm on October 23, 2014 Permalink | Reply
    Tags: , Basic Research, , ,   

    From FNAL: “Physics in a Nutshell – Unparticle physics” 

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    Thursday, Oct. 23, 2014
    Jim Pivarski

    The first property of matter that was known to be quantized was not a surprising one like spin — it was mass. That is, mass only comes in multiples of a specific value: The mass of five electrons is 5 times 511 keV. A collection of electrons cannot have 4.9 or 5.1 times this number — it must be exactly 4 or exactly 6, and this is a quantum mechanical effect.

    We don’t usually think of mass quantization as quantum mechanical because it isn’t weird. We sometimes imagine electrons as tiny balls, all alike, each with a mass of 511 keV. While this mental image could make sense of the quantization, it isn’t correct since other experiments show that an electron is an amorphous wave or cloud. Individual electrons cannot be distinguished. They all melt together, and yet the mass of a blob of electron-stuff is always a whole number.

    The quantization of mass comes from a wave equation — physicists assume that electron-stuff obeys this equation, and when they solve the equation, it has only solutions with mass in integer multiples of 511 keV. Since this agrees with what we know, it is probably the right equation for electrons. However, there might be other forms of matter that obey different laws.

    One alternative would be to obey a symmetry principle known as scale invariance. Scale invariance is a property of fractals, like the one shown above, in which the same drawing is repeated within itself at smaller and smaller scales. For matter, scale invariance is the property that the energy, momentum and mass of a blob of matter can be scaled up equally. Normal particles like electrons are not scale-invariant because the energy can be scaled by an arbitrary factor, but the mass is rigidly quantized.

    It is theoretically possible that another type of matter, dubbed “unparticles,” could satisfy scale invariance. In a particle detector, unparticles would look like particles with random masses. One unparticle decay might have many times the apparent mass of the next — the distribution would be broad.

    Another feature of unparticles is that they don’t interact strongly with the familiar Standard Model particles, but they interact more strongly at higher energies. Therefore, they would not have been produced in low-energy experiments, but could be discovered in high-energy experiments.

    The Standard Model of elementary particles, with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    Physicists searched for unparticles using the 7- and 8-TeV collisions produced by the LHC in 2011-2012, and they found nothing. This tightens limits, reducing the possible parameters that the theory can have, but it does not completely rule it out. Next spring, the LHC is scheduled to start up with an energy of 13 TeV, which would provide a chance to test the theory more thoroughly. Perhaps the next particle to be discovered is not a particle at all.

    CERN LHC Grand Tunnel
    LHC Tunnel

    See the full article here.

    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics.

    ScienceSprings relies on technology from

    MAINGEAR computers



  • richardmitnick 3:48 pm on October 22, 2014 Permalink | Reply
    Tags: , , Basic Research, ,   

    From NASA/Spitzer: “Galactic Wheel of Life Shines in Infrared” 


    No Writer Credit

    It might look like a spoked wheel or even a “Chakram” weapon wielded by warriors like “Xena,” from the fictional TV show, but this ringed galaxy is actually a vast place of stellar life. A newly released image from NASA’s Spitzer Space Telescope shows the galaxy NGC 1291. Though the galaxy is quite old, roughly 12 billion years, it is marked by an unusual ring where newborn stars are igniting.

    “The rest of the galaxy is done maturing,” said Kartik Sheth of the National Radio Astronomy Observatory of Charlottesville, Virginia. “But the outer ring is just now starting to light up with stars.”

    NGC 1291 is located about 33 million light-years away in the constellation Eridanus. It is what’s known as a barred galaxy, because its central region is dominated by a long bar of stars (in the new image, the bar is within the blue circle and looks like the letter “S”).

    The bar formed early in the history of the galaxy. It churns material around, forcing stars and gas from their original circular orbits into large, non-circular, radial orbits. This creates resonances — areas where gas is compressed and triggered to form new stars. Our own Milky Way galaxy has a bar, though not as prominent as the one in NGC 1291.

    Sheth and his colleagues are busy trying to better understand how bars of stars like these shape the destinies of galaxies. In a program called Spitzer Survey of Stellar Structure in Galaxies, or S4G, Sheth and his team of scientists are analyzing the structures of more than 3,000 galaxies in our local neighborhood. The farthest galaxy of the bunch lies about 120 million light-years away — practically a stone’s throw in comparison to the vastness of space.

    Local Group

    The astronomers are documenting structural features, including bars. They want to know how many of the local galaxies have bars, as well as the environmental conditions in a galaxy that might influence the formation and structure of bars.

    “Now, with Spitzer we can measure the precise shape and distribution of matter within the bar structures,” said Sheth. “The bars are a natural product of cosmic evolution, and they are part of the galaxies’ endoskeleton. Examining this endoskeleton for the fossilized clues to their past gives us a unique view of their evolution.”

    In the Spitzer image, shorter-wavelength infrared light has been assigned the color blue, and longer-wavelength light, red. The stars that appear blue in the central, bulge region of the galaxy are older; most of the gas, or star-making fuel, there was previously used up by earlier generations of stars. When galaxies are young and gas-rich, stellar bars drive gas toward the center, feeding star formation.


    Over time, as the fuel runs out, the central regions become quiescent and star-formation activity shifts to the outskirts of a galaxy. There, spiral density waves and resonances induced by the central bar help convert gas to stars. The outer ring, seen here in red, is one such resonance area, where gas has been trapped and ignited into star-forming frenzy.

    See the full article here.

    Another view of NGC 1291
    This composite image of NGC 1291 is processed primarily from data collected by NASA’s Galaxy Evolution Explorer in December 2003. The blue in this image is ultraviolet light captured by GALEX’s long wavelength detector, the green is ultraviolet light detected by its short wavelength detector, and the red in the image is visible light courtesy of data from the Cerro Tololo Inter-American Observatory in Chile

    NASA Galex telescope

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.
    i1 i2

    ScienceSprings relies on technology from

    MAINGEAR computers



  • richardmitnick 3:20 pm on October 22, 2014 Permalink | Reply
    Tags: , , Basic Research, ,   

    From Hubble: Hubblecast #78 Part 1 

    NASA Hubble Telescope


    October 22, 2014

    Dr J answers questions about Hubble

    Last month we asked the public to send us their Hubble- and astronomy-related questions, and the response was incredible! In this episode Dr J answers a selection of the questions that were specifically about Hubble itself. These range from where Hubble is and how it avoids crashing into space debris, to what the future holds for Hubble, how its life will end, and what will take its place. Watch out for the next episode in which the more science-related questions will get their turn.

    Watch, enjoy, learn.

    See the video here.

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

    ScienceSprings relies on technology from

    MAINGEAR computers



  • richardmitnick 2:47 pm on October 22, 2014 Permalink | Reply
    Tags: Basic Research, , ,   

    From BNL: “Brookhaven Lab Launches Computational Science Initiative” 

    Brookhaven Lab

    October 22, 2014
    Karen McNulty Walsh, (631) 344-8350 or Peter Genzer, (631) 344-3174

    Leveraging computational science expertise and investments across the Laboratory to tackle “big data” challenges

    Building on its capabilities in computational science and data management, the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory is embarking upon a major new Computational Science Initiative (CSI). This program will leverage computational science expertise and investments across multiple programs at the Laboratory—including the flagship facilities that attract thousands of scientific users each year—further establishing Brookhaven as a leader in tackling the “big data” challenges at the frontiers of scientific discovery. Key partners in this endeavor include nearby universities such as Columbia, Cornell, New York University, Stony Brook, and Yale, and IBM Research.

    Blue Gene/Q Supercomputer at Brookhaven National Laboratory

    “The CSI will bring together under one umbrella the expertise that drives [the success of Brookhaven's scientific programs] to foster cross-disciplinary collaboration and make optimal use of existing technologies, while also leading the development of new tools and methods that will benefit science both within and beyond the Laboratory.”
    — Robert Tribble

    “Advances in computational science and management of large-scale scientific data developed at Brookhaven Lab have been a key factor in the success of the scientific programs at the Relativistic Heavy Ion Collider (RHIC), the National Synchrotron Light Source (NSLS), the Center for Functional Nanomaterials (CFN), and in biological, atmospheric, and energy systems science, as well as our collaborative participation in international research endeavors, such as the ATLAS experiment at Europe’s Large Hadron Collider,” said Robert Tribble, Brookhaven Lab’s Deputy Director for Science and Technology, who is leading the development of the new initiative. “The CSI will bring together under one umbrella the expertise that drives this success to foster cross-disciplinary collaboration and make optimal use of existing technologies, while also leading the development of new tools and methods that will benefit science both within and beyond the Laboratory.”

    BNL RHIC Campus
    RHIC at BNL

    BNL NSLS Interior
    NSLS at BNL

    A centerpiece of the initiative will be a new Center for Data-Driven Discovery (C3D) that will serve as a focal point for this activity. Within the Laboratory it will drive the integration of intellectual, programmatic, and data/computational infrastructure with the goals of accelerating and expanding discovery by developing critical mass in key disciplines, enabling nimble response to new opportunities for discovery or collaboration, and ultimately integrating the tools and capabilities across the entire Laboratory into a single scientific resource. Outside the Laboratory C3D will serve as a focal point for recruiting, collaboration, and communication.

    The people and capabilities of C3D are also integral to the success of Brookhaven’s key scientific facilities, including those named above, the new National Synchrotron Light Source II (NSLS-II), and a possible future electron ion collider (EIC) at Brookhaven. Hundreds of scientists from Brookhaven and thousands of facility users from universities, industry, and other laboratories around the country and throughout the world will benefit from the capabilities developed by C3D personnel to make sense of the enormous volumes of data produced at these state-of-the-art research facilities.

    BNL NSLS II Photo
    BNL NSLS-II Interior
    NSLS II at BNL

    The CSI in conjunction with C3D will also host a series of workshops/conferences and training sessions in high-performance computing—including annual workshops on extreme-scale data and scientific knowledge discovery, extreme-scale networking, and extreme-scale workflow for integrated science. These workshops will explore topics at the frontier of data-centric, high-performance computing, such as the combination of efficient methodologies and innovative computer systems and concepts to manage and analyze scientific data generated at high volumes and rates.

    “The missions of C3D and the overall CSI are well aligned with the broad missions and goals of many agencies and industries, especially those of DOE’s Office of Science and its Advanced Scientific Computing Research (ASCR) program,” said Robert Harrison, who holds a joint appointment as director of Brookhaven Lab’s Computational Science Center (CSC) and Stony Brook University’s Institute for Advanced Computational Science (IACS) and is leading the creation of C3D.

    The CSI at Brookhaven will specifically address the challenge of developing new tools and techniques to deliver on the promise of exascale science—the ability to compute at a rate of 1018 floating point operations per second (exaFLOPS), to handle the copious amount of data created by computational models and simulations, and to employ exascale computation to interpret and analyze exascale data anticipated from experiments in the near future.

    “Without these tools, scientific results would remain hidden in the data generated by these simulations,” said Brookhaven computational scientist Michael McGuigan, who will be working on data visualization and simulation at C3D. “These tools will enable researchers to extract knowledge and share key findings.”

    Through the initiative, Brookhaven will establish partnerships with leading universities, including Columbia, Cornell, Stony Brook, and Yale to tackle “big data” challenges.

    “Many of these institutions are already focusing on data science as a key enabler to discovery,” Harrison said. “For example, Columbia University has formed the Institute for Data Sciences and Engineering with just that mission in mind.”

    Computational scientists at Brookhaven will also seek to establish partnerships with industry. “As an example, partnerships with IBM have been successful in the past with co-design of the QCDOC and BlueGene computer architectures,” McGuigan said. “We anticipate more success with data-centric computer designs in the future.”

    An area that may be of particular interest to industrial partners is how to interface big-data experimental problems (such as those that will be explored at NSLS-II, or in the fields of high-energy and nuclear physics) with high-performance computing using advanced network technologies. “The reality of ‘computing system on a chip’ technology opens the door to customizing high-performance network interface cards and application program interfaces (APIs) in amazing ways,” said Dantong Yu, a group leader and data scientist in the CSC.

    “In addition, the development of asynchronous data access and transports based on remote direct memory access (RDMA) techniques and improvements in quality of service for network traffic could significantly lower the energy footprint for data processing while enhancing processing performance. Projects in this area would be highly amenable to industrial collaboration and lead to an expansion of our contributions beyond system and application development and designing programming algorithms into the new arena of exascale technology development,” Yu said.

    “The overarching goal of this initiative will be to bring under one umbrella all the major data-centric activities of the Lab to greatly facilitate the sharing of ideas, leverage knowledge across disciplines, and attract the best data scientists to Brookhaven to help us advance data-centric, high-performance computing to support scientific discovery,” Tribble said. “This initiative will also greatly increase the visibility of the data science already being done at Brookhaven Lab and at its partner institutions.”

    See the full article here.

    BNL Campus

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world.Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

    ScienceSprings relies on technology from

    MAINGEAR computers



  • richardmitnick 2:20 pm on October 22, 2014 Permalink | Reply
    Tags: , , Basic Research, , Human Space Flight, ,   

    From LLNL: “NASA taps Livermore photon scientists for heat-shield research” 

    Lawrence Livermore National Laboratory

    Breanna Bishop, LLNL, (925) 423-9802, bishop33@llnl.gov

    Researchers in Lawrence Livermore National Laboratory’s NIF & Photon Science Directorate are working with NASA Ames Research Center at Moffet Field, California on the development of technology to simulate re-entry effects on the heat shield for the Orion spacecraft, NASA’s next crewed spaceship. Orion is designed to carry astronauts beyond low Earth orbit to deep-space destinations such as an asteroid and, eventually, Mars.

    NASA Orion Spacecraft

    The Orion heat shield will have to withstand re-entry temperatures that are too severe for existing reusable thermal protection systems, such as those used on the space shuttles. NASA’s development and characterization of a more robust shield requires that radiant heating capability be added to the Arc Jet Complex at NASA Ames, which develops thermal protection materials and systems in support of the Orion Program Office at NASA Johnson Space Center in Houston and the NASA Human Exploration and Operations Mission Directorate at NASA headquarters in Washington, DC.

    NASA Ames currently owns two 50 kilowatt (kW) commercial fiber laser systems and needs to augment the optical power into the Arc Jet chamber by another 100 to 200 kW. The team at Ames recently approached LLNL to explore an option of using commercially available radiance-conditioned laser diode arrays for this task, similar to the diodes used in the Laboratory’s Diode-Pumped Alkali Laser (DPAL) and E-23/HAPLS laser projects. Their aim is to assess whether such systems can better meet the technical objectives for survival testing. If successful, such diode arrays would offer a dramatically lower-cost solution.

    Technicians install a protective shell onto the Orion crew module for its first test flight this December. Credit: Dimitri Gerondidaki/NASA

    To perform these tests, LLNL is collaborating with Ames on diode array characterizations using an existing diode system developed for LLNL’s laser programs. These tests will allow NASA Ames to assess whether their optical output can meet in-chamber target illumination requirements, and thus inform their choice for a future system.

    While the space shuttles traveled at 17,000 miles per hour, Orion will be re-entering Earth’s atmosphere at 20,000 miles per hour on its first flight test in December. The faster a spacecraft travels through the atmosphere, the more heat it generates. The hottest the space shuttle tiles got was about 2,300 degrees Fahrenheit; the Orion back shell could get as hot as 4,000 degrees. For more about Orion, see the NASA video.

    See the full article here.

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security
    DOE Seal
    ScienceSprings relies on technology from

    MAINGEAR computers



  • richardmitnick 1:30 pm on October 22, 2014 Permalink | Reply
    Tags: , , Basic Research, ,   

    From ESO: “Two Families of Comets Found Around Nearby Star” 

    European Southern Observatory

    22 October 2014

    Alain Lecavelier des Etangs
    Institut d’astrophysique de Paris (IAP)/CNRS/UPMC
    Tel: +33-1-44-32-80-77
    Cell: +33 6 21 75 12 03
    Email: lecaveli@iap.fr

    Flavien Kiefer
    Institut d’astrophysique de Paris (IAP)/CNRS/UPMC and School of Physics and Astronomy, Tel Aviv University
    France / Israel
    Tel: +972-502-838-163
    Email: kiefer@iap.fr

    Richard Hook
    ESO education and Public Outreach Department
    Garching bei München, Germany
    Tel: +49 89 3200 6655
    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    The HARPS instrument at ESO’s La Silla Observatory in Chile has been used to make the most complete census of comets around another star ever created. A French team of astronomers has studied nearly 500 individual comets orbiting the star Beta Pictoris and has discovered that they belong to two distinct families of exocomets: old exocomets that have made multiple passages near the star, and younger exocomets that probably came from the recent breakup of one or more larger objects. The new results will appear in the journal Nature on 23 October 2014.

    ESO HARPS at La Silla

    ESO LaSilla Long View
    La Silla


    Beta Pictoris is a young star located about 63 light-years from the Sun. It is only about 20 million years old and is surrounded by a huge disc of material — a very active young planetary system where gas and dust are produced by the evaporation of comets and the collisions of asteroids.

    Flavien Kiefer (IAP/CNRS/UPMC), lead author of the new study sets the scene: “Beta Pictoris is a very exciting target! The detailed observations of its exocomets give us clues to help understand what processes occur in this kind of young planetary system.”

    For almost 30 years astronomers have seen subtle changes in the light from Beta Pictoris that were thought to be caused by the passage of comets in front of the star itself. Comets are small bodies of a few kilometres in size, but they are rich in ices, which evaporate when they approach their star, producing gigantic tails of gas and dust that can absorb some of the light passing through them. The dim light from the exocomets is swamped by the light of the brilliant star so they cannot be imaged directly from Earth.

    To study the Beta Pictoris exocomets, the team analysed more than 1000 observations obtained between 2003 and 2011 with the HARPS instrument on the ESO 3.6-metre telescope at the La Silla Observatory in Chile.

    ESO 3.6m telescope & HARPS at LaSilla
    ESO 3.6 metre telescope with HARPS

    The researchers selected a sample of 493 different exocomets. Some exocomets were observed several times and for a few hours. Careful analysis provided measurements of the speed and the size of the gas clouds. Some of the orbital properties of each of these exocomets, such as the shape and the orientation of the orbit and the distance to the star, could also be deduced.

    This analysis of several hundreds of exocomets in a single exo-planetary system is unique. It revealed the presence of two distinct families of exocomets: one family of old exocomets whose orbits are controlled by a massive planet [1], and another family, probably arising from the recent breakdown of one or a few bigger objects. Different families of comets also exist in the Solar System.

    The exocomets of the first family have a variety of orbits and show a rather weak activity with low production rates of gas and dust. This suggests that these comets have exhausted their supplies of ices during their multiple passages close to Beta Pictoris [2].

    The exocomets of the second family are much more active and are also on nearly identical orbits [3]. This suggests that the members of the second family all arise from the same origin: probably the breakdown of a larger object whose fragments are on an orbit grazing the star Beta Pictoris.

    Flavien Kiefer concludes: “For the first time a statistical study has determined the physics and orbits for a large number of exocomets. This work provides a remarkable look at the mechanisms that were at work in the Solar System just after its formation 4.5 billion years ago.”

    [1] A giant planet, Beta Pictoris b, has also been discovered in orbit at about a billion kilometres from the star and studied using high resolution images obtained with adaptive optics.

    [2] Moreover, the orbits of these comets (eccentricity and orientation) are exactly as predicted for comets trapped in orbital resonance with a massive planet. The properties of the comets of the first family show that this planet in resonance must be at about 700 million kilometres from the star — close to where the planet Beta Pictoris b was discovered.

    [3] This makes them similar to the comets of the Kreutz family in the Solar System, or the fragments of Comet Shoemaker-Levy 9, which impacted Jupiter in July 1994.
    More information

    This research was presented in a paper entitled Two families of exocomets in the Beta Pictoris system which will be published in the journal Nature on 23 October 2014.

    The team is composed of F. Kiefer (Institut d’astrophysique de Paris [IAP], CNRS, Université Pierre & Marie Curie-Paris 6, Paris, France), A. Lecavelier des Etangs (IAP), J. Boissier (Institut de radioastronomie millimétrique, Saint Martin d’Hères, France), A. Vidal-Madjar (IAP), H. Beust (Institut de planétologie et d’astrophysique de Grenoble [IPAG], CNRS, Université Joseph Fourier-Grenoble 1, Grenoble, France), A.-M. Lagrange (IPAG), G. Hébrard (IAP) and R. Ferlet (IAP).

    See the full article here.

    Visit ESO in Social Media-




    ESO Main

    ESO, European Southern Observatory, builds and operates a suite of the world’s most advanced ground-based astronomical telescopes.

    ScienceSprings relies on technology from

    MAINGEAR computers



  • richardmitnick 1:26 pm on October 22, 2014 Permalink | Reply
    Tags: , , Basic Research, , , ,   

    From NASA Goddard: “NASA-led Study Sees Titan Glowing at Dusk and Dawn” 

    NASA Goddard Banner

    October 22, 2014
    Nancy Neal-Jones 301-286-0039
    Elizabeth Zubritsky 301-614-5438
    Goddard Space Flight Center, Greenbelt, Md.

    New maps of Saturn’s moon Titan reveal large patches of trace gases shining brightly near the north and south poles. These regions are curiously shifted off the poles, to the east or west, so that dawn is breaking over the southern region while dusk is falling over the northern one.

    High in the atmosphere of Titan, large patches of two trace gases glow near the north pole, on the dusk side of the moon, and near the south pole, on the dawn side. Brighter colors indicate stronger signals from the two gases, HNC (left) and HC3N (right); red hues indicate less pronounced signals.
    Image Credit: NRAO/AUI/NSF

    The pair of patches was spotted by a NASA-led international team of researchers investigating the chemical make-up of Titan’s atmosphere.

    “This is an unexpected and potentially groundbreaking discovery,” said Martin Cordiner, an astrochemist working at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the lead author of the study. “These kinds of east-to-west variations have never been seen before in Titan’s atmospheric gases. Explaining their origin presents us with a fascinating new problem.”

    The mapping comes from observations made by the Atacama Large Millimeter/submillimeter Array (ALMA), a network of high-precision antennas in Chile. At the wavelengths used by these antennas, the gas-rich areas in Titan’s atmosphere glowed brightly. And because of ALMA’s sensitivity, the researchers were able to obtain spatial maps of chemicals in Titan’s atmosphere from a “snapshot” observation that lasted less than three minutes.

    ALMA Array
    ALMA Array

    Titan’s atmosphere has long been of interest because it acts as a chemical factory, using energy from the sun and Saturn’s magnetic field to produce a wide range of organic, or carbon-based, molecules. Studying this complex chemistry may provide insights into the properties of Earth’s very early atmosphere, which may have shared many chemical characteristics with present-day Titan.

    In this study, the researchers focused on two organic molecules, hydrogen isocyanide (HNC) and cyanoacetylene (HC3N), that are formed in Titan’s atmosphere. At lower altitudes, the two molecules appear concentrated above Titan’s north and south poles. These findings are consistent with observations made by NASA’s Cassini spacecraft, which has found a cloud cap and high concentrations of some gases over whichever pole is experiencing winter on Titan.

    NASA Cassini Spacecraft

    The surprise came when the researchers compared the gas concentrations at different levels in the atmosphere. At the highest altitudes, the gas pockets appeared to be shifted away from the poles. These off-pole locations are unexpected because the fast-moving winds in Titan’s middle atmosphere move in an east–west direction, forming zones similar to Jupiter’s bands, though much less pronounced. Within each zone, the atmospheric gases should, for the most part, be thoroughly mixed.

    The researchers do not have an obvious explanation for these findings yet.

    “It seems incredible that chemical mechanisms could be operating on rapid enough timescales to cause enhanced ‘pocket’’ in the observed molecules,” said Conor Nixon, a planetary scientist at Goddard and a coauthor of the paper, published online today in the Astrophysical Journal Letters. “We would expect the molecules to be quickly mixed around the globe by Titan’s winds.”

    At the moment, the scientists are considering a number of potential explanations, including thermal effects, previously unknown patterns of atmospheric circulation, or the influence of Saturn’s powerful magnetic field, which extends far enough to engulf Titan.

    Further observations are expected to improve the understanding of the atmosphere and ongoing processes on Titan and other objects throughout the solar system.

    NASA’s Astrobiology Program supported this work through a grant to the Goddard Center for Astrobiology, a part of the NASA Astrobiology Institute. Additional funding came from NASA’s Planetary Atmospheres and Planetary Astronomy programs. ALMA, an international astronomy facility, is funded in Europe by the European Southern Observatory, in North America by the U.S. National Science Foundation in cooperation with the National Research Council of Canada and the National Science Council of Taiwan, and in East Asia by the National Institutes of Natural Sciences of Japan in cooperation with the Academia Sinica in Taiwan.

    See the full article here.

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.


    ScienceSprings relies on technology from

    MAINGEAR computers



Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc

Get every new post delivered to your Inbox.

Join 345 other followers

%d bloggers like this: