From ALMA [The Atacama Large Millimeter/submillimeter Array](CL) : “New ALMA receivers that will probe our cosmic origins successfully tested”

The European Southern Observatory [La Observatorio Europeo Austral] [Observatoire européen austral][Europäische Südsternwarte](EU)(CL)/National Radio Astronomy Observatory(US)/National Astronomical Observatory of Japan(JP) ALMA Observatory (CL).

From ALMA [The Atacama Large Millimeter/submillimeter Array](CL)

8.14.23

Nicolás Lira
Education and Public Outreach Coordinator
Joint ALMA Observatory, Santiago – Chile
Phone: +56 2 2467 6519
Cell phone: +56 9 9445 7726
Email: nicolas.lira@alma.cl

1
This image shows the cryostat of an Atacama Large Millimeter/submillimeter Array (ALMA) antenna populated with 10 receivers for the first time. The receivers pick up the signals from outer space at specific frequency bands, covering a window from 950 to 35 GHz, and are stored in a cryostat that cools them down to temperatures as low as -269°C. The installation of the “Band 2” receivers, initiated in 2023, means ALMA antennas can observe within the final frequency range (67 to 116 GHs) for which the array was designed. Credit: S. Otarola, ALMA(ESO/NAOJ/NRAO)

2
This image, courtesy of the NOVA sub-mm instrumentation group, shows the cold cartridge assembly for one of the ALMA Band 2 receivers. This component of the receiver operates at cryogenic temperature, while the warm cartridge assembly is at room temperature. Band 2 receivers pick up signals from the Universe with frequencies between 67 and 116 GHz. Credit: NOVA/ESO.

3
This image, courtesy of the NOVA sub-mm instrumentation group, shows the warm cartridge assembly for one of the ALMA Band 2 receivers. This component of the receiver operates at room temperature while the cold cartridge assembly is kept at cryogenic temperatures. Band 2 receivers pick up signals from the Universe with frequencies between 67 and 116 GHz. Credit: NOVA/ESO.

An international team of astronomers and engineers at the Atacama Large Millimeter/submillimeter Array (ALMA) have made the first measurements using new receivers installed on multiple ALMA antennas. The receivers allow to observe within the final frequency range — with wavelengths between 2.6 to 4.5 millimeters (67-116 GHz) — for which it was designed. This so-called “Band 2” opens a new window into our cosmic origins, allowing measurements that reveal how distant stars and galaxies form, all the way down to the origins of planets and the building blocks of life.

ALMA, located on the Chajnantor Plateau in Chile, consists of a total of 66 antennas, each equipped with an arsenal of highly sensitive receivers. Each receiver type observes within a particular band, or range of wavelengths in the submillimetre/millimetre region of the electromagnetic spectrum. In total these bands cover a window from 0.3 to 8.6 millimetres (950 to 35 GHz; Bands 10 to 1, respectively). Band 2 opens a completely new window from 67-84 GHz, while expanding the bandwidth available in the 84-116 GHz frequency range, which is also covered by band 3.

The first Band 2 pre-production receiver was successfully installed and tested on an ALMA antenna earlier this year. Now, a second and third Band 2 pre-production receiver have been installed on two other ALMA antennas, enabling true interferometry: measuring the fringe pattern that results from the correlation of multiple signals from a bright astronomical object. This “first fringes” milestone means astronomers have been able to combine the signals from multiple antennas for the first time in Band 2. As further ALMA antennas are upgraded with Band 2 receivers, the amount of detail and level of sensitivity will improve, allowing for ever more precise observations of our Universe.

ALMA Band 2 will allow important measurements of the cold interstellar medium, the mixture of dust and molecular gas that exists in the space between stars and fuels star formation. As well as this, ALMA will be able to study the properties of dust and molecules in objects from planet-forming discs to far-away galaxies at a level of detail never achieved before.

Closer to home, the new receivers will enable observations of complex organic molecules in nearby galaxies, providing clues on how the conditions for life to begin are created. At the same time, Band 2 will be important for helping astronomers better understand how planets form by probing the carbon monoxide “snow line”, a region in planet-forming discs far away enough from the central stars for gas to condense.

The development of Band 2 was led by ESO and included partners at the National Astronomical Observatory of Japan (NAOJ), University of Chile, several European institutes and industry. Production of the first receiver cartridges was then carried out by a consortium comprising the Netherlands Research School for Astronomy (NOVA), the Advanced Receiver Development (GARD) group at the Onsala Space Observatory, Chalmers University, Sweden, and the Italian National Institute for Astrophysics (INAF), in collaboration with NAOJ.

Now, the team will work to optimize the performance of the pre-production receivers, and this will be followed by full production of the remaining receivers for installation on all 66 antennas, ushering in a new era of observations for ALMA. In concert with complementary ALMA upgrades planned for the 2030 time frame, the installation of Band 2 will enable an instantaneous bandwidth four times larger than what most current ALMA receivers can achieve, dramatically increasing its observation speed.

See the full article here.

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

The Atacama Large Millimeter/submillimeter Array (ALMA) (CL), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

NRAO Small

The ESO 60th anniversary

ALMA is a time machine!

ALMA-In Search of our Cosmic Origins

ALMA and its Partners Celebrate 10 Years of Groundbreaking Science

From The European Southern Observatory [Observatorio Europeo Austral] [Observatoire européen austral][Europäische Südsternwarte] (EU)(CL): “Astronomers find missing link for water in the Solar System”

The ESO 60th anniversary

From The European Southern Observatory [Observatorio Europeo Austral] [Observatoire européen austral][Europäische Südsternwarte] (EU)(CL)

3.8.23

John J. Tobin
National Radio Astronomy Observatory
Charlottesville, USA
Email: jtobin@nrao.edu

Margot Leemker
Leiden Observatory
Leiden, the Netherlands
Email: leemker@strw.leidenuniv.nl

Juan Carlos Muñoz Mateos
ESO Media Officer
Garching bei München, Germany
Tel: +49 89 3200 6176
Email: press@eso.org

1
Water in the planet-forming disc around the star V883 Orionis (artist’s impression)

3
ALMA images of the disc around the star V883 Orionis, showing the spatial distribution of water (left, orange), dust (middle, green) and carbon monoxide (blue, right). Because water freezes out at higher temperatures than carbon monoxide, it can only be detected in gaseous form closer to the star. The apparent gap in the the water and carbon monoxide images is actually due to the bright emission of the dust, which attenuates the emission of the gas. Credit: ALMA (ESO/NAOJ/NRAO); J. Tobin, B. Saxton (NRAO/AUI/NSF)

4
This artist’s impression shows the planet-forming disc around the star V883 Orionis. In the outermost part of the disc water is frozen out as ice and therefore can’t be easily detected. An outburst of energy from the star heats the inner disc to a temperature where water is gaseous, enabling astronomers to detect it. Credit: L. Calçada/ESO.

Using the Atacama Large Millimeter/submillimeter Array (ALMA) [below], astronomers have detected gaseous water in the planet-forming disc around the star V883 Orionis. This water carries a chemical signature that explains the journey of water from star-forming gas clouds to planets, and supports the idea that water on Earth is even older than our Sun.

“We can now trace the origins of water in our Solar System to before the formation of the Sun,” says John J. Tobin, an astronomer at the National Radio Astronomy Observatory, USA and lead author of the study published today in Nature [below].

This discovery was made by studying the composition of water in V883 Orionis [depictions above], a planet-forming disc about 1300 light-years away from Earth. When a cloud of gas and dust collapses it forms a star at its centre. Around the star, material from the cloud also forms a disc. Over the course of a few million years, the matter in the disc clumps together to form comets, asteroids, and eventually planets. Tobin and his team used ALMA, in which the European Southern Observatory (ESO) is a partner, to measure chemical signatures of the water and its path from the star-forming cloud to planets.

Water usually consists of one oxygen atom and two hydrogen atoms. Tobin’s team studied a slightly heavier version of water where one of the hydrogen atoms is replaced with deuterium — a heavy isotope of hydrogen. Because simple and heavy water form under different conditions, their ratio can be used to trace when and where the water was formed. For instance, this ratio in some Solar System comets has been shown to be similar to that in water on Earth, suggesting that comets might have delivered water to Earth.

The journey of water from clouds to young stars, and then later from comets to planets has previously been observed, but until now the link between the young stars and comets was missing. “V883 Orionis is the missing link in this case,” says Tobin. “The composition of the water in the disc is very similar to that of comets in our own Solar System. This is confirmation of the idea that the water in planetary systems formed billions of years ago, before the Sun, in interstellar space, and has been inherited by both comets and Earth, relatively unchanged.”

But observing the water turned out to be tricky. “Most of the water in planet-forming discs is frozen out as ice, so it’s usually hidden from our view,” says co-author Margot Leemker, a PhD student at Leiden Observatory in the Netherlands. Gaseous water can be detected thanks to the radiation emitted by molecules as they spin and vibrate, but this is more complicated when the water is frozen, where the motion of molecules is more constrained. Gaseous water can be found towards the centre of the discs, close to the star, where it’s warmer. However, these close-in regions are hidden by the dust disc itself, and are also too small to be imaged with our telescopes.

Fortunately, the V883 Orionis disc was shown in a recent study [Nature (below)] to be unusually hot. A dramatic outburst of energy from the star heats the disc, “up to a temperature where water is no longer in the form of ice, but gas, enabling us to detect it,” says Tobin.

The team used ALMA, an array of radio telescopes in northern Chile, to observe the gaseous water in V883 Orionis. Thanks to its sensitivity and ability to discern small details they were able to both detect the water and determine its composition, as well as map its distribution within the disc. From the observations, they found this disc contains at least 1200 times the amount of water in all Earth’s oceans.

In the future, they hope to use ESO’s upcoming Extremely Large Telescope [below] and its first-generation instrument METIS.

This mid-infrared instrument will be able to resolve the gas-phase of water in these types of discs, strengthening the link of water’s path all the way from star-forming clouds to solar systems. ”This will give us a much more complete view of the ice and gas in planet-forming discs,” concludes Leemker.

More information

This research was presented in a paper to appear in Nature [below]

The team is composed of John J. Tobin (National Radio Astronomy Observatory, USA), Merel L. R. van’t Hoff (Department of Astronomy, University of Michigan, USA), Margot Leemker (Leiden Observatory, Leiden University, the Netherlands [Leiden]) , Ewine F. van Dishoeck (Leiden), Teresa Paneque-Carreño (Leiden; European Southern Observatory, Germany), Kenji Furuya (National Astronomical Observatory of Japan, Japan), Daniel Harsono (Institute of Astronomy, National Tsing Hua University, Taiwan), Magnus V. Persson (Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, Sweden), L. Ilsedore Cleeves (Department of Astronomy, University of Virginia, USA), Patrick D. Sheehan (Center for Interdisciplinary Exploration and Research in Astronomy, Northwestern University, USA) and Lucas Cieza (Núcleo de Astronomía, Facultad de Ingeniería, Millennium Nucleus on Young Exoplanets and their Moons, Universidad Diego Portales, Chile).

Nature 2016
Nature
From the science paper
Abstract

Water is a fundamental molecule in the star and planet formation process, essential for catalysing the growth of solid material and the formation of planetesimals within disks[1*],[2]. However, the water snowline and the HDO:H2O ratio within proto-planetary disks have not been well characterized because water only sublimates at roughly 160 K (ref. 3), meaning that most water is frozen out onto dust grains and that the water snowline radii are less than 10 AU (astronomical units)[4],[5]. The sun-like protostar V883 Ori (M* = 1.3 M⊙)[6] is undergoing an accretion burst[7], increasing its luminosity to roughly 200 L⊙ (ref. 8), and previous observations suggested that its water snowline is 40–120 AU in radius[6],[9],[10]. Here we report the direct detection of gas phase water (HDO and H218O) from the disk of V883 Ori. We measure a midplane water snowline radius of approximately 80 AU, comparable to the scale of the Kuiper Belt, and detect water out to a radius of roughly 160 AU. We then measure the HDO:H2O ratio of the disk to be (2.26 ± 0.63) × 10−3. This ratio is comparable to those of protostellar envelopes and comets, and exceeds that of Earth’s oceans by 3.1σ. We conclude that disks directly inherit water from the star-forming cloud and this water becomes incorporated into large icy bodies, such as comets, without substantial chemical alteration.
*References in the science paper.

3

4

5

For further illustrations see the science paper.

See the full article here .

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

Visit ESO (EU) in Social Media-

Facebook

Twitter

YouTube

ESO Bloc Icon

The European Southern Observatory [Observatorio Europeo Austral] [Observatoire européen austral][Europäische Südsternwarte] (EU)(CL) is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.


European Southern Observatory(EU) La Silla HELIOS (HARPS Experiment for Light Integrated Over the Sun).
ESO
3.6m telescope & HARPS atCerro LaSilla, Chile, 600 km north of Santiago de Chile at an altitude of 2400 metres.

MPG Institute for Astronomy [Max-Planck-Institut für Astronomie](DE) 2.2 meter telescope at/European Southern Observatory(EU) Cerro La Silla, Chile, 600 km north of Santiago de Chile at an altitude of 2400 metres.

European Southern Observatory(EU) La Silla Observatory 600 km north of Santiago de Chile at an altitude of 2400 metres.
European Southern Observatory(EU) , Very Large Telescope at Cerro Paranal in the Atacama Desert •ANTU (UT1; The Sun ) •KUEYEN (UT2; The Moon ) •MELIPAL (UT3; The Southern Cross ), and •YEPUN (UT4; Venus – as evening star). Elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo.

European Southern Observatory(EU) VLTI Interferometer image, Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level, •ANTU (UT1; The Sun ),
•KUEYEN (UT2; The Moon ),
•MELIPAL (UT3; The Southern Cross ), and
•YEPUN (UT4; Venus – as evening star).

ESO VLT Survey telescope.

ESO Very Large Telescope 4 lasers on Yepun (CL).

Glistening against the awesome backdrop of the night sky above ESO’s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT, a major asset of the Adaptive Optics system.

ESO/NTT NTT at Cerro La Silla , Chile, at an altitude of 2400 metres.

Part of ESO’s Paranal Observatory the VLT Survey Telescope (VISTA) observes the brilliantly clear skies above the Atacama Desert of Chile. It is the largest survey telescope in the world in visible light, with an elevation of 2,635 metres (8,645 ft) above sea level.

European Southern Observatory/National Radio Astronomy Observatory(US)/National Astronomical Observatory of Japan(JP) ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres.

European Southern Observatory(EU) ELT 39 meter telescope to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).

European Southern Observatory(EU)/MPG Institute for Radio Astronomy [MPG Institut für Radioastronomie](DE) ESO’s Atacama Pathfinder Experiment(CL) high on the Chajnantor plateau in Chile’s Atacama region, at an altitude of over 4,800 m (15,700 ft).

Leiden MASCARA instrument cabinet at Cerro La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft).

ESO Next Generation Transit Survey telescopes, an array of twelve robotic 20-centimetre telescopes at Cerro Paranal,(CL) 2,635 metres (8,645 ft) above sea level.


ESO Speculoos telescopes four 1 meter robotic telescopes at ESO Paranal Observatory 2635 metres 8645 ft above sea level.

TAROT telescope at Cerro LaSilla, 2,635 metres (8,645 ft) above sea level.

European Southern Observatory(EU) ExTrA telescopes at erro LaSilla at an altitude of 2400 metres.

A novel gamma ray telescope under construction on Mount Hopkins, Arizona. A large project known as the Čerenkov Telescope Array composed of hundreds of similar telescopes to be situated in the Canary Islands and Chile at, ESO Cerro Paranal site The telescope on Mount Hopkins will be fitted with a prototype high-speed camera, assembled at the. University of Wisconsin–Madison and capable of taking pictures at a billion frames per second. Credit: Vladimir Vassiliev.

European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU), The new Test-Bed Telescope 2is housed inside the shiny white dome shown in this picture, at ESO’s LaSilla Facility in Chile. The telescope has now started operations and will assist its northern-hemisphere twin in protecting us from potentially hazardous, near-Earth objects.The domes of ESO’s 0.5 m and the Danish 0.5 m telescopes are visible in the background of this image.Part of the world-wide effort to scan and identify near-Earth objects, the European Space Agency’s Test-Bed Telescope 2 (TBT2), a technology demonstrator hosted at ESO’s La Silla Observatory in Chile, has now started operating. Working alongside its northern-hemisphere partner telescope, TBT2 will keep a close eye on the sky for asteroids that could pose a risk to Earth, testing hardware and software for a future telescope network.

European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU) The open dome of The black telescope structure of the‘s Test-Bed Telescope 2 peers out of its open dome in front of the rolling desert landscape. The telescope is located at ESO’s La Silla Observatory, which sits at a 2400 metre altitude in the Chilean Atacama desert.

From The Harvard-Smithsonian Center for Astrophysics: “It’s a Planet:: New Evidence of Baby Planet in the Making”

From The Harvard-Smithsonian Center for Astrophysics

9.14.22

Astronomers have developed a new technique to identify small planets hidden in protoplanetary disks.

1
Credit: M.Weiss/Center for Astrophysics | Harvard & Smithsonian.

Astronomers agree that planets are born in protoplanetary disks — rings of dust and gas that surround young, newborn stars. While hundreds of these disks have been spotted throughout the universe, observations of actual planetary birth and formation have proved difficult within these environments.

Now, astronomers at the Center for Astrophysics | Harvard & Smithsonian have developed a new way to detect these elusive newborn planets — and with it, “smoking gun” evidence of a small Neptune or Saturn-like planet lurking in a disk. The results are described today in The Astrophysical Journal Letters [below].

“Directly detecting young planets is very challenging and has so far only been successful in one or two cases,” says Feng Long, a postdoctoral fellow at the Center for Astrophysics who led the new study. “The planets are always too faint for us to see because they’re embedded in thick layers of gas and dust.”

Scientists instead must hunt for clues to infer a planet is developing beneath the dust.

“In the past few years, we’ve seen many structures pop up on disks that we think are caused by a planet’s presence, but it could be caused by something else, too” Long says. “We need new techniques to look at and support that a planet is there.”

For her study, Long decided to re-examine a protoplanetary disk known as LkCa 15. Located 518 light years away, the disk sits in the Taurus constellation on the sky. Scientists previously reported [Astronomy & Astrophysics (below)] evidence for planet formation in the disk using observations with the ALMA Observatory.

The European Southern Observatory [La Observatorio Europeo Austral] [Observatoire européen austral][Europäische Südsternwarte](EU)(CL)/National Radio Astronomy Observatory/National Astronomical Observatory of Japan(JP) ALMA Observatory (CL).

Long dove into new high-resolution ALMA data on LkCa 15, obtained primarily in 2019, and discovered two faint features that had not previously been detected.

About 42 astronomical units out from the star — or 42 times the distance Earth is from the Sun — Long discovered a dusty ring with two separate and bright bunches of material orbiting within it. The material took the shape of a small clump and a larger arc, and were separated by 120 degrees.

Long examined the scenario with computer models to figure out what was causing the buildup of material and learned that their size and locations matched the model for the presence of a planet.

“This arc and clump are separated by about 120 degrees,” she says. “That degree of separation doesn’t just happen — it’s important mathematically.”

Long points to positions in space known as Lagrange points, where two bodies in motion — such as a star and orbiting planet — produce enhanced regions of attraction around them where matter may accumulate.

LaGrange Points map. NASA.

“We’re seeing that this material is not just floating around freely, it’s stable and has a preference where it wants to be located based on physics and the objects involved,” Long explains.

In this case, the arc and clump of material Long detected are located at the L4 and L5 Lagrange points. Hidden 60 degrees between them is a small planet causing the accumulation of dust at points L4 and L5.

The results show the planet is roughly the size of Neptune or Saturn, and around one to three million years old. (That’s relatively young when it comes to planets.)

Directly imaging the small, newborn planet may not be possible any time soon due to technology constraints, but Long believes further ALMA observations of LkCa 15 can provide additional evidence supporting her planetary discovery.

She also hopes her new approach for detecting planets — with material preferentially accumulating at Lagrange points — will be utilized in the future by astronomers.

“I do hope this method can be widely adopted in the future,” she says. “The only caveat is that this requires very deep data as the signal is weak.”

Long recently completed her postdoctoral fellowship at the Center for Astrophysics and will join the University of Arizona as a NASA Hubble Fellow this September.

Co-authors on the study are Sean Andrews, Chunhua Qi, David Wilner and Karin Oberg of the CfA; Shangjia Zhang and Zhaohuan Zhu of the University of Nevada; Myriam Benisty of the University of Grenoble; Stefano Facchini of the University of Milan; Andrea Isella of Rice University; Jaehan Bae of the University of Florida; Jane Huang of the University of Michigan and Ryan Loomis of the National Radio Astronomy Observatory.

This study involved high resolution ALMA observations taken with Band 6 (1.3mm) and Band 7 (0.88mm) receivers.

Science papers:
The Astrophysical Journal Letters 2022
Astronomy & Astrophysics 2020

See the full article here .


five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.


Stem Education Coalition

The The Harvard-Smithsonian Center for Astrophysics combines the resources and research facilities of the Harvard College Observatory and the Smithsonian Astrophysical Observatory under a single director to pursue studies of those basic physical processes that determine the nature and evolution of the universe. The Smithsonian Astrophysical Observatory is a bureau of the Smithsonian Institution, founded in 1890. The Harvard College Observatory, founded in 1839, is a research institution of the Faculty of Arts and Sciences, Harvard University, and provides facilities and substantial other support for teaching activities of the Department of Astronomy.

Founded in 1973 and headquartered in Cambridge, Massachusetts, the CfA leads a broad program of research in astronomy, astrophysics, Earth and space sciences, as well as science education. The CfA either leads or participates in the development and operations of more than fifteen ground- and space-based astronomical research observatories across the electromagnetic spectrum, including the forthcoming Giant Magellan Telescope(CL) and the Chandra X-ray Observatory, one of NASA’s Great Observatories.

GMT Giant Magellan Telescope(CL) 21 meters, to be at the Carnegie Institution for Science’s NSF NOIRLab NOAO Las Campanas Observatory(CL) some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high.

National Aeronautics and Space Administration Chandra X-ray telescope.

Hosting more than 850 scientists, engineers, and support staff, the CfA is among the largest astronomical research institutes in the world. Its projects have included Nobel Prize-winning advances in cosmology and high energy astrophysics, the discovery of many exoplanets, and the first image of a black hole. The CfA also serves a major role in the global astrophysics research community: the CfA’s Astrophysics Data System, for example, has been universally adopted as the world’s online database of astronomy and physics papers. Known for most of its history as the “Harvard-Smithsonian Center for Astrophysics”, the CfA rebranded in 2018 to its current name in an effort to reflect its unique status as a joint collaboration between Harvard University and the Smithsonian Institution. The CfA’s current Director (since 2004) is Charles R. Alcock, who succeeds Irwin I. Shapiro (Director from 1982 to 2004) and George B. Field (Director from 1973 to 1982).

The Center for Astrophysics | Harvard & Smithsonian is not formally an independent legal organization, but rather an institutional entity operated under a Memorandum of Understanding between Harvard University and the Smithsonian Institution. This collaboration was formalized on July 1, 1973, with the goal of coordinating the related research activities of the Harvard College Observatory (HCO) and the Smithsonian Astrophysical Observatory (SAO) under the leadership of a single Director, and housed within the same complex of buildings on the Harvard campus in Cambridge, Massachusetts. The CfA’s history is therefore also that of the two fully independent organizations that comprise it. With a combined lifetime of more than 300 years, HCO and SAO have been host to major milestones in astronomical history that predate the CfA’s founding.

History of the Smithsonian Astrophysical Observatory (SAO)

Samuel Pierpont Langley, the third Secretary of the Smithsonian, founded the Smithsonian Astrophysical Observatory on the south yard of the Smithsonian Castle (on the U.S. National Mall) on March 1,1890. The Astrophysical Observatory’s initial, primary purpose was to “record the amount and character of the Sun’s heat”. Charles Greeley Abbot was named SAO’s first director, and the observatory operated solar telescopes to take daily measurements of the Sun’s intensity in different regions of the optical electromagnetic spectrum. In doing so, the observatory enabled Abbot to make critical refinements to the Solar constant, as well as to serendipitously discover Solar variability. It is likely that SAO’s early history as a solar observatory was part of the inspiration behind the Smithsonian’s “sunburst” logo, designed in 1965 by Crimilda Pontes.

In 1955, the scientific headquarters of SAO moved from Washington, D.C. to Cambridge, Massachusetts to affiliate with the Harvard College Observatory (HCO). Fred Lawrence Whipple, then the chairman of the Harvard Astronomy Department, was named the new director of SAO. The collaborative relationship between SAO and HCO therefore predates the official creation of the CfA by 18 years. SAO’s move to Harvard’s campus also resulted in a rapid expansion of its research program. Following the launch of Sputnik (the world’s first human-made satellite) in 1957, SAO accepted a national challenge to create a worldwide satellite-tracking network, collaborating with the United States Air Force on Project Space Track.

With the creation of National Aeronautics and Space Administration the following year and throughout the space race, SAO led major efforts in the development of orbiting observatories and large ground-based telescopes, laboratory and theoretical astrophysics, as well as the application of computers to astrophysical problems.

History of Harvard College Observatory (HCO)

Partly in response to renewed public interest in astronomy following the 1835 return of Halley’s Comet, the Harvard College Observatory was founded in 1839, when the Harvard Corporation appointed William Cranch Bond as an “Astronomical Observer to the University”. For its first four years of operation, the observatory was situated at the Dana-Palmer House (where Bond also resided) near Harvard Yard, and consisted of little more than three small telescopes and an astronomical clock. In his 1840 book recounting the history of the college, then Harvard President Josiah Quincy III noted that “…there is wanted a reflecting telescope equatorially mounted…”. This telescope, the 15-inch “Great Refractor”, opened seven years later (in 1847) at the top of Observatory Hill in Cambridge (where it still exists today, housed in the oldest of the CfA’s complex of buildings). The telescope was the largest in the United States from 1847 until 1867. William Bond and pioneer photographer John Adams Whipple used the Great Refractor to produce the first clear Daguerrotypes of the Moon (winning them an award at the 1851 Great Exhibition in London). Bond and his son, George Phillips Bond (the second Director of HCO), used it to discover Saturn’s 8th moon, Hyperion (which was also independently discovered by William Lassell).

Under the directorship of Edward Charles Pickering from 1877 to 1919, the observatory became the world’s major producer of stellar spectra and magnitudes, established an observing station in Peru, and applied mass-production methods to the analysis of data. It was during this time that HCO became host to a series of major discoveries in astronomical history, powered by the Observatory’s so-called “Computers” (women hired by Pickering as skilled workers to process astronomical data). These “Computers” included Williamina Fleming; Annie Jump Cannon; Henrietta Swan Leavitt; Florence Cushman; and Antonia Maury, all widely recognized today as major figures in scientific history. Henrietta Swan Leavitt, for example, discovered the so-called period-luminosity relation for Classical Cepheid variable stars, establishing the first major “standard candle” with which to measure the distance to galaxies. Now called “Leavitt’s Law”, the discovery is regarded as one of the most foundational and important in the history of astronomy; astronomers like Edwin Hubble, for example, would later use Leavitt’s Law to establish that the Universe is expanding, the primary piece of evidence for the Big Bang model.

Upon Pickering’s retirement in 1921, the Directorship of HCO fell to Harlow Shapley (a major participant in the so-called “Great Debate” of 1920). This era of the observatory was made famous by the work of Cecelia Payne-Gaposchkin, who became the first woman to earn a Ph.D. in astronomy from Radcliffe College (a short walk from the Observatory). Payne-Gapochkin’s 1925 thesis proposed that stars were composed primarily of hydrogen and helium, an idea thought ridiculous at the time. Between Shapley’s tenure and the formation of the CfA, the observatory was directed by Donald H. Menzel and then Leo Goldberg, both of whom maintained widely recognized programs in solar and stellar astrophysics. Menzel played a major role in encouraging the Smithsonian Astrophysical Observatory to move to Cambridge and collaborate more closely with HCO.

Joint history as the Center for Astrophysics (CfA)

The collaborative foundation for what would ultimately give rise to the Center for Astrophysics began with SAO’s move to Cambridge in 1955. Fred Whipple, who was already chair of the Harvard Astronomy Department (housed within HCO since 1931), was named SAO’s new director at the start of this new era; an early test of the model for a unified Directorship across HCO and SAO. The following 18 years would see the two independent entities merge ever closer together, operating effectively (but informally) as one large research center.

This joint relationship was formalized as the new Harvard–Smithsonian Center for Astrophysics on July 1, 1973. George B. Field, then affiliated with University of California- Berkeley, was appointed as its first Director. That same year, a new astronomical journal, the CfA Preprint Series was created, and a CfA/SAO instrument flying aboard Skylab discovered coronal holes on the Sun. The founding of the CfA also coincided with the birth of X-ray astronomy as a new, major field that was largely dominated by CfA scientists in its early years. Riccardo Giacconi, regarded as the “father of X-ray astronomy”, founded the High Energy Astrophysics Division within the new CfA by moving most of his research group (then at American Sciences and Engineering) to SAO in 1973. That group would later go on to launch the Einstein Observatory (the first imaging X-ray telescope) in 1976, and ultimately lead the proposals and development of what would become the Chandra X-ray Observatory. Chandra, the second of NASA’s Great Observatories and still the most powerful X-ray telescope in history, continues operations today as part of the CfA’s Chandra X-ray Center. Giacconi would later win the 2002 Nobel Prize in Physics for his foundational work in X-ray astronomy.

Shortly after the launch of the Einstein Observatory, the CfA’s Steven Weinberg won the 1979 Nobel Prize in Physics for his work on electroweak unification. The following decade saw the start of the landmark CfA Redshift Survey (the first attempt to map the large scale structure of the Universe), as well as the release of the Field Report, a highly influential Astronomy & Astrophysics Decadal Survey chaired by the outgoing CfA Director George Field. He would be replaced in 1982 by Irwin Shapiro, who during his tenure as Director (1982 to 2004) oversaw the expansion of the CfA’s observing facilities around the world.

Harvard Smithsonian Center for Astrophysics Fred Lawrence Whipple Observatory located near Amado, Arizona on the slopes of Mount Hopkins, Altitude 2,606 m (8,550 ft)

European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation] (EU)/National Aeronautics and Space Administration SOHO satellite. Launched in 1995.

National Aeronautics Space Agency NASA Kepler Space Telescope

CfA-led discoveries throughout this period include canonical work on Supernova 1987A, the “CfA2 Great Wall” (then the largest known coherent structure in the Universe), the best-yet evidence for supermassive black holes, and the first convincing evidence for an extrasolar planet.

The 1990s also saw the CfA unwittingly play a major role in the history of computer science and the internet: in 1990, SAO developed SAOImage, one of the world’s first X11-based applications made publicly available (its successor, DS9, remains the most widely used astronomical FITS image viewer worldwide). During this time, scientists at the CfA also began work on what would become the Astrophysics Data System (ADS), one of the world’s first online databases of research papers. By 1993, the ADS was running the first routine transatlantic queries between databases, a foundational aspect of the internet today.

The CfA Today

Research at the CfA

Charles Alcock, known for a number of major works related to massive compact halo objects, was named the third director of the CfA in 2004. Today Alcock overseas one of the largest and most productive astronomical institutes in the world, with more than 850 staff and an annual budget in excess of $100M. The Harvard Department of Astronomy, housed within the CfA, maintains a continual complement of approximately 60 Ph.D. students, more than 100 postdoctoral researchers, and roughly 25 undergraduate majors in astronomy and astrophysics from Harvard College. SAO, meanwhile, hosts a long-running and highly rated REU Summer Intern program as well as many visiting graduate students. The CfA estimates that roughly 10% of the professional astrophysics community in the United States spent at least a portion of their career or education there.

The CfA is either a lead or major partner in the operations of the Fred Lawrence Whipple Observatory, the Submillimeter Array, MMT Observatory, the South Pole Telescope, VERITAS, and a number of other smaller ground-based telescopes. The CfA’s 2019-2024 Strategic Plan includes the construction of the Giant Magellan Telescope as a driving priority for the Center.

CFA Harvard Smithsonian Submillimeter Array on Mauna Kea, Hawaii, Altitude 4,205 m (13,796 ft).

South Pole Telescope SPTPOL. The SPT collaboration is made up of over a dozen (mostly North American) institutions, including The University of Chicago ; The University of California-Berkeley ; Case Western Reserve University; Harvard/Smithsonian Astrophysical Observatory; The University of Colorado- Boulder; McGill (CA) University, The University of Illinois, Urbana-Champaign; The University of California- Davis; Ludwig Maximilians Universität München(DE); DOE’s Argonne National Laboratory; and The National Institute for Standards and Technology.

Along with the Chandra X-ray Observatory, the CfA plays a central role in a number of space-based observing facilities, including the recently launched Parker Solar Probe, Kepler Space Telescope, the Solar Dynamics Observatory (SDO), and HINODE. The CfA, via the Smithsonian Astrophysical Observatory, recently played a major role in the Lynx X-ray Observatory, a NASA-Funded Large Mission Concept Study commissioned as part of the 2020 Decadal Survey on Astronomy and Astrophysics (“Astro2020”). If launched, Lynx would be the most powerful X-ray observatory constructed to date, enabling order-of-magnitude advances in capability over Chandra.

NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker. The Johns Hopkins University Applied Physics Lab.

National Aeronautics and Space Administration Solar Dynamics Observatory.

Japan Aerospace Exploration Agency (JAXA) (国立研究開発法人宇宙航空研究開発機構] (JP)/National Aeronautics and Space Administration HINODE spacecraft.

SAO is one of the 13 stakeholder institutes for the Event Horizon Telescope Board, and the CfA hosts its Array Operations Center. In 2019, the project revealed the first direct image of a black hole.

Messier 87*, The first image of the event horizon of a black hole. This is the supermassive black hole at the center of the galaxy Messier 87. Image via The Event Horizon Telescope Collaboration released on 10 April 2019 via National Science Foundation.

The result is widely regarded as a triumph not only of observational radio astronomy, but of its intersection with theoretical astrophysics. Union of the observational and theoretical subfields of astrophysics has been a major focus of the CfA since its founding.

In 2018, the CfA rebranded, changing its official name to the “Center for Astrophysics | Harvard & Smithsonian” in an effort to reflect its unique status as a joint collaboration between Harvard University and the Smithsonian Institution. Today, the CfA receives roughly 70% of its funding from NASA, 22% from Smithsonian federal funds, and 4% from the National Science Foundation. The remaining 4% comes from contributors including the United States Department of Energy, the Annenberg Foundation, as well as other gifts and endowments.

From The National Radio Astronomy Observatory Via “phys.org” : “Astronomers discover new brown dwarf with quasi-spherical mass loss”

NRAO Banner

From The National Radio Astronomy Observatory

Via

“phys.org”

9.12.22

1
Herschel column-density map of the Ophiuchus molecular cloud. The magenta star indicates the location of SSTc2d J163134.1. The Lynds L1709 dark cloud in the region is indicated. Credit: Ruiz-Rodriguez et al., 2022.

Astronomers report the detection of a new brown dwarf as part of the Ophiuchus Disk Survey Employing ALMA [below] (ODISEA) program. The newfound object designated SSTc2d J163134.1-24006, appears to be experiencing a quasi-spherical mass loss. The discovery was detailed in a paper published September 2 for The Astrophysical Journal [below].

Brown dwarfs are intermediate objects between planets and stars, occupying the mass range between 13 and 80 Jupiter masses (0.012 and 0.076 solar masses). They can burn deuterium but are unable to burn regular hydrogen, which requires a minimum mass of at least 80 Jupiter masses and a core temperature of about 3 million K.

A team of astronomers led by Dary Ruiz-Rodriguez of the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia, have investigated SSTc2d J163134.1-24006, initially identified as a faint stellar object, under the ODISEA project, which is dedicated to study the entire population of protoplanetary disks in the Ophiuchus Molecular Cloud. They found that SSTc2d J163134.1-24006 is most likely a brown dwarf with a mass of about 0.05 solar masses and an elliptical shell of carbon monoxide (CO).

“SSTc2d J163134.1 was observed as part of the ‘Ophiuchus Disk Survey Employing ALMA’ (ODISEA) program (Project ID: 2016.1.00545.S PI: L. Cieza). ALMA Band 6 (1.3 mm) observations were performed on April 27 and August 22, 2018, during Cycle 5 using the C43-3 configuration (15–500 m baselines),” the researchers wrote in the paper.

First of all, the team serendipitously discovered an expanding shell of carbon monoxide ejected from an object, with a temperature below 3,000 K, located in the direction of the Ophiuchus Molecular Cloud. Further observations revealed that this shell is associated with SSTc2d J163134.1.

In order to explain the nature of SSTc2d J163134.1 and its expanding shell, Ruiz-Rodriguez’s team considered various scenarios, including the inside-out collapse of a dense molecular core in the Ophiuchus cloud, the mass loss of a giant star in the distant background, or a shell of gas expelled from a young brown dwarf. According to the researchers, the most plausible one is the brown dwarf hypothesis.

“We conclude that the source is not a giant star in the distant background (>5–10 kpc) and is most likely to be a young brown dwarf in the Ophiuchus cloud, at a distance of just ∼139 pc,” the astronomers explained.

Given that emission of carbon monoxide from SSTc2d J163134.1 has an elliptical shape, it was noted that this makes it the first brown dwarf known to exhibit a quasi-spherical mass loss. The authors of the paper assume that a deuterium flash could be responsible for this phenomenon, but more detailed theoretical work is required in order to verify this explanation.

Science paper:
The Astrophysical Journal

See the full article here .


five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

The National Radio Astronomy Observatory is a facility of The National Science Foundation, operated under cooperative agreement by The Associated Universities, Inc.


National Radio Astronomy Observatory Karl G Jansky Very Large Array located in central New Mexico on the Plains of San Agustin, between the towns of Magdalena and Datil, ~50 miles (80 km) west of Socorro. The VLA comprises twenty-eight 25-meter radio telescopes.

ngVLA, to be located near the location of the NRAO Karl G. Jansky Very Large Array site on the plains of San Agustin, fifty miles west of Socorro, NM, at an elevation of 6970 ft (2124 m) with additional mid-baseline stations currently spread over greater New Mexico, Arizona, Texas, and Mexico.

National Radio Astronomy Observatory Very Long Baseline Array.

The European Southern Observatory [La Observatorio Europeo Austral][Observatoire européen austral][Europäische Südsternwarte](EU)(CL))/National Radio Astronomy Observatory/National Astronomical Observatory of Japan(JP) ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres.

Access to ALMA observing time by the North American astronomical community will be through the North American ALMA Science Center (NAASC).

*The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It’s the world’s largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

From The Harvard-Smithsonian Center for Astrophysics: “Case Solved:: Missing Carbon Monoxide was Hiding in the Ice”

From The Harvard-Smithsonian Center for Astrophysics

8.22.22
Nadia Whitehead
Public Affairs Officer
Center for Astrophysics | Harvard & Smithsonian
nadia.whitehead@cfa.harvard.edu
617-721-7371

In planetary disks carbon monoxide is lurking in large chunks of ice solving the decade-old question ‘Where is the CO?’

1
Credit: M.Weiss/Center for Astrophysics | CfA

Astronomers frequently observe carbon monoxide in planetary nurseries: the compound is ultra-bright and extremely common in protoplanetary disks — regions of dust and gas where planets form around young stars — making it a prime target for scientists.

But for the last decade or so, something hasn’t been adding up when it comes to carbon monoxide observations, says Diana Powell, a NASA Hubble Fellow at the Center for Astrophysics | Harvard & Smithsonian.

A huge chunk of carbon monoxide is missing in all observations of disks if astronomers’ current predictions of its abundance are correct.

Now, a new model — validated by observations with ALMA — has solved the mystery: carbon monoxide has been hiding in ice formations within the disks. The findings are described today in the journal Nature Astronomy [below].

The European Southern Observatory [La Observatorio Europeo Austral] [Observatoire européen austral][Europäische Südsternwarte](EU)(CL)/National Radio Astronomy Observatory/National Astronomical Observatory of Japan(JP) ALMA Observatory (CL).

“This may be one of the biggest unsolved problems in planet-forming disks,” says Powell, who led the study. “Depending on the system observed, carbon monoxide is three to 100 times less than it should be; it’s off by a really huge amount.”

And carbon monoxide inaccuracies could have huge implications for the field of astrochemistry.

“Carbon monoxide is essentially used to trace everything we know about disks — like mass, composition and temperature,” Powell explains. “This could mean many of our results for disks have been biased and uncertain because we don’t understand the compound well enough.”

Intrigued by the mystery, Powell put on her detective hat and leaned on her expertise in the physics behind phase changes — when matter morphs from one state to another, like a gas changing into a solid.

On a hunch, Powell made alterations to an astrophysical model that’s currently used to study clouds on exoplanets, or planets beyond our solar system.

“What’s really special about this model is that it has detailed physics for how ice forms on particles,” she explains. “So how ice nucleates onto small particles and then how it condenses. The model carefully tracks where ice is, on what particle it’s located on, how big the particles are, how small they are and then how they move around.”

Powell applied the adapted model to planetary disks, hoping to generate an in-depth understanding of how carbon monoxide evolves over time in planetary nurseries. To test the model’s validity, Powell then compared its output to real ALMA observations of carbon monoxide in four well-studied disks — TW Hya; HD 163296; DM Tau and IM Lup.

The results and models worked really well, Powell says.

The new model lined up with each of the observations, showing that the four disks weren’t actually missing carbon monoxide at all — it had just morphed into ice which is currently undetectable with a telescope.

Radio observatories like ALMA allow astronomers to view carbon monoxide in space in its gas phase, but ice is much harder to detect with current technology, especially large formations of ice, Powell says.

The model shows that unlike previous thinking, carbon monoxide is forming on large particles of ice — especially after one million years. Prior to a million years, gaseous carbon monoxide is abundant and detectable in disks.

“This changes how we thought ice and gas were distributed in disks,” Powell says. “It also shows that detailed modelling like this is important to understand the fundamentals of these environments.”

Powell hopes her model can be further validated using observations with NASA’s Webb Telescope — which may be powerful enough to finally detect ice in disks, but that remains to be seen.

Powell, who loves phase changes and the complicated processes behind them, says she is in awe of their influence. “Small-scale ice formation physics influences disk formation and evolution — now that’s really cool.”

Science paper:
Nature Astronomy

See the full article here .


five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.


Stem Education Coalition

The The Harvard-Smithsonian Center for Astrophysics combines the resources and research facilities of the Harvard College Observatory and the Smithsonian Astrophysical Observatory under a single director to pursue studies of those basic physical processes that determine the nature and evolution of the universe. The Smithsonian Astrophysical Observatory is a bureau of the Smithsonian Institution, founded in 1890. The Harvard College Observatory, founded in 1839, is a research institution of the Faculty of Arts and Sciences, Harvard University, and provides facilities and substantial other support for teaching activities of the Department of Astronomy.

Founded in 1973 and headquartered in Cambridge, Massachusetts, the CfA leads a broad program of research in astronomy, astrophysics, Earth and space sciences, as well as science education. The CfA either leads or participates in the development and operations of more than fifteen ground- and space-based astronomical research observatories across the electromagnetic spectrum, including the forthcoming Giant Magellan Telescope(CL) and the Chandra X-ray Observatory, one of NASA’s Great Observatories.

GMT Giant Magellan Telescope(CL) 21 meters, to be at the Carnegie Institution for Science’s NSF NOIRLab NOAO Las Campanas Observatory(CL) some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high.

National Aeronautics and Space Administration Chandra X-ray telescope.

Hosting more than 850 scientists, engineers, and support staff, the CfA is among the largest astronomical research institutes in the world. Its projects have included Nobel Prize-winning advances in cosmology and high energy astrophysics, the discovery of many exoplanets, and the first image of a black hole. The CfA also serves a major role in the global astrophysics research community: the CfA’s Astrophysics Data System, for example, has been universally adopted as the world’s online database of astronomy and physics papers. Known for most of its history as the “Harvard-Smithsonian Center for Astrophysics”, the CfA rebranded in 2018 to its current name in an effort to reflect its unique status as a joint collaboration between Harvard University and the Smithsonian Institution. The CfA’s current Director (since 2004) is Charles R. Alcock, who succeeds Irwin I. Shapiro (Director from 1982 to 2004) and George B. Field (Director from 1973 to 1982).

The Center for Astrophysics | Harvard & Smithsonian is not formally an independent legal organization, but rather an institutional entity operated under a Memorandum of Understanding between Harvard University and the Smithsonian Institution. This collaboration was formalized on July 1, 1973, with the goal of coordinating the related research activities of the Harvard College Observatory (HCO) and the Smithsonian Astrophysical Observatory (SAO) under the leadership of a single Director, and housed within the same complex of buildings on the Harvard campus in Cambridge, Massachusetts. The CfA’s history is therefore also that of the two fully independent organizations that comprise it. With a combined lifetime of more than 300 years, HCO and SAO have been host to major milestones in astronomical history that predate the CfA’s founding.

History of the Smithsonian Astrophysical Observatory (SAO)

Samuel Pierpont Langley, the third Secretary of the Smithsonian, founded the Smithsonian Astrophysical Observatory on the south yard of the Smithsonian Castle (on the U.S. National Mall) on March 1,1890. The Astrophysical Observatory’s initial, primary purpose was to “record the amount and character of the Sun’s heat”. Charles Greeley Abbot was named SAO’s first director, and the observatory operated solar telescopes to take daily measurements of the Sun’s intensity in different regions of the optical electromagnetic spectrum. In doing so, the observatory enabled Abbot to make critical refinements to the Solar constant, as well as to serendipitously discover Solar variability. It is likely that SAO’s early history as a solar observatory was part of the inspiration behind the Smithsonian’s “sunburst” logo, designed in 1965 by Crimilda Pontes.

In 1955, the scientific headquarters of SAO moved from Washington, D.C. to Cambridge, Massachusetts to affiliate with the Harvard College Observatory (HCO). Fred Lawrence Whipple, then the chairman of the Harvard Astronomy Department, was named the new director of SAO. The collaborative relationship between SAO and HCO therefore predates the official creation of the CfA by 18 years. SAO’s move to Harvard’s campus also resulted in a rapid expansion of its research program. Following the launch of Sputnik (the world’s first human-made satellite) in 1957, SAO accepted a national challenge to create a worldwide satellite-tracking network, collaborating with the United States Air Force on Project Space Track.

With the creation of National Aeronautics and Space Administration the following year and throughout the space race, SAO led major efforts in the development of orbiting observatories and large ground-based telescopes, laboratory and theoretical astrophysics, as well as the application of computers to astrophysical problems.

History of Harvard College Observatory (HCO)

Partly in response to renewed public interest in astronomy following the 1835 return of Halley’s Comet, the Harvard College Observatory was founded in 1839, when the Harvard Corporation appointed William Cranch Bond as an “Astronomical Observer to the University”. For its first four years of operation, the observatory was situated at the Dana-Palmer House (where Bond also resided) near Harvard Yard, and consisted of little more than three small telescopes and an astronomical clock. In his 1840 book recounting the history of the college, then Harvard President Josiah Quincy III noted that “…there is wanted a reflecting telescope equatorially mounted…”. This telescope, the 15-inch “Great Refractor”, opened seven years later (in 1847) at the top of Observatory Hill in Cambridge (where it still exists today, housed in the oldest of the CfA’s complex of buildings). The telescope was the largest in the United States from 1847 until 1867. William Bond and pioneer photographer John Adams Whipple used the Great Refractor to produce the first clear Daguerrotypes of the Moon (winning them an award at the 1851 Great Exhibition in London). Bond and his son, George Phillips Bond (the second Director of HCO), used it to discover Saturn’s 8th moon, Hyperion (which was also independently discovered by William Lassell).

Under the directorship of Edward Charles Pickering from 1877 to 1919, the observatory became the world’s major producer of stellar spectra and magnitudes, established an observing station in Peru, and applied mass-production methods to the analysis of data. It was during this time that HCO became host to a series of major discoveries in astronomical history, powered by the Observatory’s so-called “Computers” (women hired by Pickering as skilled workers to process astronomical data). These “Computers” included Williamina Fleming; Annie Jump Cannon; Henrietta Swan Leavitt; Florence Cushman; and Antonia Maury, all widely recognized today as major figures in scientific history. Henrietta Swan Leavitt, for example, discovered the so-called period-luminosity relation for Classical Cepheid variable stars, establishing the first major “standard candle” with which to measure the distance to galaxies. Now called “Leavitt’s Law”, the discovery is regarded as one of the most foundational and important in the history of astronomy; astronomers like Edwin Hubble, for example, would later use Leavitt’s Law to establish that the Universe is expanding, the primary piece of evidence for the Big Bang model.

Upon Pickering’s retirement in 1921, the Directorship of HCO fell to Harlow Shapley (a major participant in the so-called “Great Debate” of 1920). This era of the observatory was made famous by the work of Cecelia Payne-Gaposchkin, who became the first woman to earn a Ph.D. in astronomy from Radcliffe College (a short walk from the Observatory). Payne-Gapochkin’s 1925 thesis proposed that stars were composed primarily of hydrogen and helium, an idea thought ridiculous at the time. Between Shapley’s tenure and the formation of the CfA, the observatory was directed by Donald H. Menzel and then Leo Goldberg, both of whom maintained widely recognized programs in solar and stellar astrophysics. Menzel played a major role in encouraging the Smithsonian Astrophysical Observatory to move to Cambridge and collaborate more closely with HCO.

Joint history as the Center for Astrophysics (CfA)

The collaborative foundation for what would ultimately give rise to the Center for Astrophysics began with SAO’s move to Cambridge in 1955. Fred Whipple, who was already chair of the Harvard Astronomy Department (housed within HCO since 1931), was named SAO’s new director at the start of this new era; an early test of the model for a unified Directorship across HCO and SAO. The following 18 years would see the two independent entities merge ever closer together, operating effectively (but informally) as one large research center.

This joint relationship was formalized as the new Harvard–Smithsonian Center for Astrophysics on July 1, 1973. George B. Field, then affiliated with University of California- Berkeley, was appointed as its first Director. That same year, a new astronomical journal, the CfA Preprint Series was created, and a CfA/SAO instrument flying aboard Skylab discovered coronal holes on the Sun. The founding of the CfA also coincided with the birth of X-ray astronomy as a new, major field that was largely dominated by CfA scientists in its early years. Riccardo Giacconi, regarded as the “father of X-ray astronomy”, founded the High Energy Astrophysics Division within the new CfA by moving most of his research group (then at American Sciences and Engineering) to SAO in 1973. That group would later go on to launch the Einstein Observatory (the first imaging X-ray telescope) in 1976, and ultimately lead the proposals and development of what would become the Chandra X-ray Observatory. Chandra, the second of NASA’s Great Observatories and still the most powerful X-ray telescope in history, continues operations today as part of the CfA’s Chandra X-ray Center. Giacconi would later win the 2002 Nobel Prize in Physics for his foundational work in X-ray astronomy.

Shortly after the launch of the Einstein Observatory, the CfA’s Steven Weinberg won the 1979 Nobel Prize in Physics for his work on electroweak unification. The following decade saw the start of the landmark CfA Redshift Survey (the first attempt to map the large scale structure of the Universe), as well as the release of the Field Report, a highly influential Astronomy & Astrophysics Decadal Survey chaired by the outgoing CfA Director George Field. He would be replaced in 1982 by Irwin Shapiro, who during his tenure as Director (1982 to 2004) oversaw the expansion of the CfA’s observing facilities around the world.

Harvard Smithsonian Center for Astrophysics Fred Lawrence Whipple Observatory located near Amado, Arizona on the slopes of Mount Hopkins, Altitude 2,606 m (8,550 ft)

European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganisation] (EU)/National Aeronautics and Space Administration SOHO satellite. Launched in 1995.

National Aeronautics Space Agency NASA Kepler Space Telescope

CfA-led discoveries throughout this period include canonical work on Supernova 1987A, the “CfA2 Great Wall” (then the largest known coherent structure in the Universe), the best-yet evidence for supermassive black holes, and the first convincing evidence for an extrasolar planet.

The 1990s also saw the CfA unwittingly play a major role in the history of computer science and the internet: in 1990, SAO developed SAOImage, one of the world’s first X11-based applications made publicly available (its successor, DS9, remains the most widely used astronomical FITS image viewer worldwide). During this time, scientists at the CfA also began work on what would become the Astrophysics Data System (ADS), one of the world’s first online databases of research papers. By 1993, the ADS was running the first routine transatlantic queries between databases, a foundational aspect of the internet today.

The CfA Today

Research at the CfA

Charles Alcock, known for a number of major works related to massive compact halo objects, was named the third director of the CfA in 2004. Today Alcock overseas one of the largest and most productive astronomical institutes in the world, with more than 850 staff and an annual budget in excess of $100M. The Harvard Department of Astronomy, housed within the CfA, maintains a continual complement of approximately 60 Ph.D. students, more than 100 postdoctoral researchers, and roughly 25 undergraduate majors in astronomy and astrophysics from Harvard College. SAO, meanwhile, hosts a long-running and highly rated REU Summer Intern program as well as many visiting graduate students. The CfA estimates that roughly 10% of the professional astrophysics community in the United States spent at least a portion of their career or education there.

The CfA is either a lead or major partner in the operations of the Fred Lawrence Whipple Observatory, the Submillimeter Array, MMT Observatory, the South Pole Telescope, VERITAS, and a number of other smaller ground-based telescopes. The CfA’s 2019-2024 Strategic Plan includes the construction of the Giant Magellan Telescope as a driving priority for the Center.

CFA Harvard Smithsonian Submillimeter Array on Mauna Kea, Hawaii, Altitude 4,205 m (13,796 ft).

South Pole Telescope SPTPOL. The SPT collaboration is made up of over a dozen (mostly North American) institutions, including The University of Chicago ; The University of California-Berkeley ; Case Western Reserve University; Harvard/Smithsonian Astrophysical Observatory; The University of Colorado- Boulder; McGill (CA) University, The University of Illinois, Urbana-Champaign; The University of California- Davis; Ludwig Maximilians Universität München(DE); DOE’s Argonne National Laboratory; and The National Institute for Standards and Technology.

Along with the Chandra X-ray Observatory, the CfA plays a central role in a number of space-based observing facilities, including the recently launched Parker Solar Probe, Kepler Space Telescope, the Solar Dynamics Observatory (SDO), and HINODE. The CfA, via the Smithsonian Astrophysical Observatory, recently played a major role in the Lynx X-ray Observatory, a NASA-Funded Large Mission Concept Study commissioned as part of the 2020 Decadal Survey on Astronomy and Astrophysics (“Astro2020”). If launched, Lynx would be the most powerful X-ray observatory constructed to date, enabling order-of-magnitude advances in capability over Chandra.

NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker. The Johns Hopkins University Applied Physics Lab.

National Aeronautics and Space Administration Solar Dynamics Observatory.

Japan Aerospace Exploration Agency (JAXA) (国立研究開発法人宇宙航空研究開発機構] (JP)/National Aeronautics and Space Administration HINODE spacecraft.

SAO is one of the 13 stakeholder institutes for the Event Horizon Telescope Board, and the CfA hosts its Array Operations Center. In 2019, the project revealed the first direct image of a black hole.

Messier 87*, The first image of the event horizon of a black hole. This is the supermassive black hole at the center of the galaxy Messier 87. Image via The Event Horizon Telescope Collaboration released on 10 April 2019 via National Science Foundation.

The result is widely regarded as a triumph not only of observational radio astronomy, but of its intersection with theoretical astrophysics. Union of the observational and theoretical subfields of astrophysics has been a major focus of the CfA since its founding.

In 2018, the CfA rebranded, changing its official name to the “Center for Astrophysics | Harvard & Smithsonian” in an effort to reflect its unique status as a joint collaboration between Harvard University and the Smithsonian Institution. Today, the CfA receives roughly 70% of its funding from NASA, 22% from Smithsonian federal funds, and 4% from the National Science Foundation. The remaining 4% comes from contributors including the United States Department of Energy, the Annenberg Foundation, as well as other gifts and endowments.

From The University of Florida: “Discovery of new exoplanet raises questions about planet formation”

From The University of Florida

1
AS 209 is one of several young star systems being studied by the ALMA telescope for clues to planet formation. (ALMA/DSHARP)

Astronomers have identified one of the youngest exoplanets ever discovered, hidden in the swirl of gas around a newly born star 390 light-years from Earth.

The Jupiter-sized world offers two key opportunities to scientists studying how all planets, including those in our own solar system, develop. A mere 1.5-million-year-old infant compared to its probable lifespan of billions of years, the planet is so young it can still provide clues about its birth. And this study marks the first time astronomers have analyzed an exoplanet’s surrounding disk of gas, which not only provides more information about the planet’s past but also how its future moons will develop.

“The best way to study planet formation is to observe planets while they’re forming,” said Jaehan Bae, the University of Florida professor of astronomy who led the new discovery.

Bae and his international team of collaborators, including UF doctoral student Maria Galloway-Sprietsma, published their findings July 27 in The Astrophysical Journal Letters [below].

Clues to our past

“I was always curious to learn how our solar system planets had formed in the past,” Bae said. “We can study planets in our solar system directly in many ways. We can get samples of planets, asteroids and comets. But we still can’t see what happened in the past.”

The next best thing to seeing into our own solar system’s history is for scientists like Bae to study the birth of exoplanets, those worlds that orbit stars other than our own sun. So Bae’s team turned to ALMA, a clever array of dozens of radio antennas in the Atacama Desert of northern Chile that is powerful enough to spot these far flung planets.

The European Southern Observatory [La Observatorio Europeo Austral] [Observatoire européen austral][Europäische Südsternwarte](EU)(CL)/National Radio Astronomy Observatory/National Astronomical Observatory of Japan(JP) ALMA Observatory (CL).

By combining signals from antennas spread across miles of desert, ALMA acts as a single, enormous telescope.

The research group focused on a young star system known as AS 209, one of five stars being studied as a part of a broader ALMA program, known as MAPS, designed to expand out understanding of the chemistry of planet formation.

Scientists can look for clues in each star’s circumstellar disk, the flattened circle of material leftover after the star coalesces in the center of the system. Our solar system once hosted such a disk, and it eventually coalesced into the eight planets.

The AS 209 circumstellar disk has several distinct rings, akin to the rings surrounding Saturn. After analyzing gaps in these rings and other anomalies in the AS 209 disk, the researchers identified the young planet, surrounded by a cloud of material known as a circumplanetary disk.

Because the new study is the first to measure the gas of this surrounding material, it provides a much more complete picture of planet formation than previous studies could accomplish.

“Most of the circumplanetary disk mass is in the gas, not the solid particles. If you see only solid particles in the system, then you’re studying a minor component of the disk,” Bae said. “And in fact one thing we found is the gas-to-dust mass ratio is much, much larger than previously expected, at least 1000-to-1.”

New mysteries

While the planet’s young age and surrounding gas will help astronomers answer existing questions about planet formation, the planet offers up new mysteries of its own.

Namely: How did it form so far away from its own star?

Bae’s team pinpointed the exoplanet at a whopping 200 astronomical units from the AS 209 star. One astronomical unit is the distance between the Earth and the sun. Neptune, the most distant planet, sits at 30 astronomical units, while Pluto orbits roughly 40 astronomical units out from the sun. Beyond that, as far as scientists know, lies nothing but a cloud of small asteroids, comets, and dwarf planets.

Bae’s team has proposed two main models for how the planet formed at this immense distance. In one, the young star’s own gravity jostled the leftover disk of material enough to seed a new planet. The other model relies on the planet seeding itself through the slow accumulation of tiny particles of solid material until there’s enough mass to form a large core.

But neither model sits neatly with the data. The circumstellar disk of the young star seems too small for its gravity to have initiated planet formation at this distance. At the same time, astronomers saw little evidence of the kind of tiny, grain-of-sand-sized particles that clump together to eventually form a planet’s core at the distance of the new exoplanet.

Fortunately, the researchers may not have to wait much longer to get a clearer picture of the planet’s unusual genesis. They have been approved for an early analysis with the new James Webb Space Telescope. The telescope will observe the AS 209 system this month, which will provide key information that could untangle the mystery.

“That’s what makes this system really exciting,” said Bae. “We can follow it with future observations.”

Science paper:
The Astrophysical Journal Letters

See the full article here.

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

The University of Florida is a public land-grant research university in Gainesville, Florida. It is a senior member of the State University System of Florida, traces its origins to 1853, and has operated continuously on its Gainesville campus since September 1906.

After the Florida state legislature’s creation of performance standards in 2013, the Florida Board of Governors designated the University of Florida as one of the three “preeminent universities” among the twelve universities of the State University System of Florida. For 2022, U.S. News & World Report ranked Florida as the 5th (tied) best public university and 28th (tied) best university in the United States. The University of Florida is the only member of the Association of American Universities in Florida and is classified among “R1: Doctoral Universities – Very high research activity”.

The university is accredited by the Southern Association of Colleges and Schools (SACS). It is the third largest Florida university by student population, and is the fifth largest single-campus university in the United States with 57,841 students enrolled for during the 2020–21 school year. The University of Florida is home to 16 academic colleges and more than 150 research centers and institutes. It offers multiple graduate professional programs—including business administration, engineering, law, dentistry, medicine, pharmacy and veterinary medicine—on one contiguous campus, and administers 123 master’s degree programs and 76 doctoral degree programs in eighty-seven schools and departments. The university’s seal is also the seal of the state of Florida, which is on the state flag, though in blue rather than multiple colors.

The University of Florida’s intercollegiate sports teams, commonly known as the “Florida Gators”, compete in National Collegiate Athletic Association (NCAA) Division I and the Southeastern Conference (SEC). In their 111-year history, the university’s varsity sports teams have won 42 national team championships, 37 of which are NCAA titles, and Florida athletes have won 275 individual national championships. In addition, as of 2021, University of Florida students and alumni have won 143 Olympic medals, including 69 gold medals.

The University of Florida traces its origins to 1853, when the East Florida Seminary, the oldest of the University of Florida’s four predecessor institutions, was founded in Ocala, Florida.

On January 6, 1853, Governor Thomas Brown signed a bill that provided public support for higher education in Florida. Gilbert Kingsbury was the first person to take advantage of the legislation, and established the East Florida Seminary, which operated until the outbreak of the Civil War in 1861. The East Florida Seminary was Florida’s first state-supported institution of higher learning.

James Henry Roper, an educator from North Carolina and a state senator from Alachua County, had opened a school in Gainesville, the Gainesville Academy, in 1858. In 1866, Roper offered his land and school to the State of Florida in exchange for the East Florida Seminary’s relocation to Gainesville.

The second major precursor to the University of Florida was the Florida Agricultural College, established at Lake City by Jordan Probst in 1884. Florida Agricultural College became the state’s first land-grant college under the Morrill Act. In 1903, the Florida Legislature, looking to expand the school’s outlook and curriculum beyond its agricultural and engineering origins, changed the name of Florida Agricultural College to the “University of Florida,” a name the school would hold for only two years.

In 1905, the Florida Legislature passed the Buckman Act, which consolidated the state’s publicly supported higher education institutions. The member of the legislature who wrote the act, Henry Holland Buckman, later became the namesake of Buckman Hall, one of the first buildings constructed on the new university’s campus. The Buckman Act organized the State University System of Florida and created the Florida Board of Control to govern the system. It also abolished the six pre-existing state-supported institutions of higher education, and consolidated the assets and academic programs of four of them to form the new “University of the State of Florida.” The four predecessor institutions consolidated to form the new university included the University of Florida at Lake City (formerly Florida Agricultural College) in Lake City, the East Florida Seminary in Gainesville, the St. Petersburg Normal and Industrial School in St. Petersburg, and the South Florida Military College in Bartow.

The Buckman Act also consolidated the colleges and schools into three institutions segregated by race and gender—the University of the State of Florida for white men, the Florida Female College for white women, and the State Normal School for Colored Students for African-American men and women.

The City of Gainesville, led by its mayor William Reuben Thomas, campaigned to be home to the new university. On July 6, 1905, the Board of Control selected Gainesville for the new university campus. Andrew Sledd, president of the pre-existing University of Florida at Lake City, was selected to be the first president of the new University of the State of Florida. The 1905–1906 academic year was a year of transition; the new University of the State of Florida was legally created, but operated on the campus of the old University of Florida in Lake City until the first buildings on the new campus in Gainesville were complete. Architect William A. Edwards designed the first official campus buildings in the Collegiate Gothic style. Classes began on the new Gainesville campus on September 26, 1906, with 102 students enrolled.

In 1909, the school’s name was simplified from the “University of the State of Florida” to the “University of Florida.”

The alligator was incidentally chosen as the school mascot in 1911, after a local vendor ordered and sold school pennants imprinted with an alligator emblem since the animal is very common in freshwater habitats in the Gainesville area and throughout the state. The mascot was a popular choice, and the university’s sports teams quickly adopted the nickname.

The school colors of orange and blue were also officially established in 1911, though the reasons for the choice are unclear. The most likely rationale was that they are a combination of the colors of the university’s two largest predecessor institutions, as the East Florida Seminary used orange and black while Florida Agricultural College used blue and white. The older school’s colors may have been an homage to early Scottish and Ulster-Scots Presbyterian settlers of north central Florida, whose ancestors were originally from Northern Ireland and the Scottish Lowlands.

In 1909, Albert Murphree was appointed the university’s second president. He organized the university into several colleges, increased enrollment from under 200 to over 2,000, and was instrumental in the founding of the Florida Blue Key leadership society. Murphree is the only University of Florida president honored with a statue on campus.

In 1924, the Florida Legislature mandated women of a “mature age” (at least twenty-one years old) who had completed sixty semester hours from a “reputable educational institution” be allowed to enroll during regular semesters at the University of Florida in programs that were unavailable at Florida State College for Women. Before this, only the summer semester was coeducational, to accommodate women teachers who wanted to further their education during the summer break. Lassie Goodbread-Black from Lake City became the first woman to enroll at the University of Florida, in the College of Agriculture in 1925.

John J. Tigert became the third university president in 1928. Disgusted by the under-the-table payments being made by universities to athletes, Tigert established the grant-in-aid athletic scholarship program in the early 1930s, which was the genesis of the modern athletic scholarship plan used by the National Collegiate Athletic Association. Inventor and educator Blake R Van Leer was hired as Dean to launch new engineering departments and scholarships. Van Leer also managed all applications for federal funding, chaired the Advanced Planning Committee per Tigert’s request. These efforts included consulting for the Florida Emergency Relief Administration throughout the 1930s.

Beginning in 1946, there was dramatically increased interest among male applicants who wanted to attend the University of Florida, mostly returning World War II veterans who could attend college under the GI Bill of Rights (Servicemen’s Readjustment Act). Unable to immediately accommodate this increased demand, the Florida Board of Control opened the Tallahassee Branch of the University of Florida on the campus of Florida State College for Women in Tallahassee. By the end of the 1946–47 school year, 954 men were enrolled at the Tallahassee Branch. The following semester, the Florida Legislature returned the Florida State College for Women to coeducational status and renamed it Florida State University. These events also opened up all of the colleges that comprise the University of Florida to female students. Florida Women’s Hall of Fame member Marylyn Van Leer became the first woman to receive a master’s degree in engineering. African-American students were allowed to enroll starting in 1958. Shands Hospital opened in 1958 along with the University of Florida College of Medicine to join the established College of Pharmacy. Rapid campus expansion began in the 1950s and continues today.

The University of Florida is one of three Florida public universities, along with Florida State University and the University of South Florida, to be designated as a “preeminent university” by Florida senate bill 1076, enacted by the Florida legislature and signed into law by the governor in 2013. As a result, the preeminent universities receive additional funding to improve the academics and national reputation of higher education within the state of Florida.

In 1985, the University of Florida was invited to join The Association of American Universities, an organization of sixty-two academically prominent public and private research universities in the United States and Canada. Florida is one of the seventeen public, land-grant universities that belong to the AAU. In 2009, President Bernie Machen and the University of Florida Board of Trustees announced a major policy transition for the university. The Board of Trustees supported the reduction in the number of undergraduates and the shift of financial and other academic resources to graduate education and research. In 2017, the University of Florida became the first university in the state of Florida to crack the top ten best public universities according to U.S. News. The University of Florida was awarded $900.7 million in annual research expenditures in sponsored research for the 2020 fiscal year. In 2017, university president Kent Fuchs announced a plan to hire 500 new faculty to break into the top five best public universities; the newest faculty members would be hired in STEM fields.

In its 2021 edition, U.S. News & World Report ranked the University of Florida as tied for the fifth-best public university in the United States, and tied for 28th overall among all national universities, public and private.

Many of the University of Florida’s graduate schools have received top-50 national rankings from U.S. News & World Report with the school of education 25th, Florida’s Hough School of Business 25th, Florida’s Medical School (research) tied for 43rd, the Engineering School tied for 45th, the Levin College of Law tied for 31st, and the Nursing School tied for 24th in the 2020 rankings.

Florida’s graduate programs ranked for 2020 by U.S. News & World Report in the nation’s top 50 were audiology tied for 26th, analytical chemistry 11th, clinical psychology tied for 31st, computer science tied for 49th, criminology 19th, health care management tied for 33rd, nursing-midwifery tied for 35th, occupational therapy tied for 17th, pharmacy tied for 9th, physical therapy tied for 10th, physician assistant tied for 21st, physics tied for 37th, psychology tied for 39th, public health tied for 37th, speech-language pathology tied for 28th, statistics tied for 40th, and veterinary medicine 9th.

In 2013, U.S. News & World Report ranked the engineering school 38th nationally, with its programs in biological engineering ranked 3rd, materials engineering 11th, industrial engineering 13th, aerospace engineering 26th, chemical engineering 28th, environmental engineering 30th, computer engineering 31st, civil engineering 32nd, electrical engineering 34th, mechanical engineering 44th.

The 2018 Academic Ranking of World Universities list assessed the University of Florida as 86th among global universities, based on overall research output and faculty awards. In 2017, Washington Monthly ranked the University of Florida 18th among national universities, with criteria based on research, community service, and social mobility. The lowest national ranking received by the university from a major publication comes from Forbes which ranked the university 68th in the nation in 2018. This ranking focuses mainly on net positive financial impact, in contrast to other rankings, and generally ranks liberal arts colleges above most research universities.

University of Florida received the following rankings by The Princeton Review in its latest Best 380 Colleges Rankings: 13th for Best Value Colleges without Aid, 18th for Lots of Beer, and 42nd for Best Value Colleges. It also was named the number one vegan-friendly school for 2014, according to a survey conducted by PETA.

On Forbes’ 2016 list of Best Value Public Colleges, University of Florida was ranked second. It was also ranked third on Forbes’ Overall Best Value Colleges Nationwide.

The university spent over $900 million on research and development in 2020, ranking it one of the highest in the nation. According to a 2019 study by the university’s Institute of Food and Agricultural Sciences, the university contributed $16.9 billion to Florida’s economy and was responsible for over 130,000 jobs in the 2017–18 fiscal year. The Milken Institute named University of Florida one of the top-five U.S. institutions in the transfer of biotechnology research to the marketplace (2006). Some 50 biotechnology companies have resulted from faculty research programs. Florida consistently ranks among the top 10 universities in licensing. Royalty and licensing income includes the glaucoma drug Trusopt, the sports drink Gatorade, and the Sentricon termite elimination system. The Institute of Food and Agricultural Sciences is ranked No. 1 by The National Science Foundation in Research and Development. University of Florida ranked seventh among all private and public universities for the number of patents awarded for 2005.

Research includes diverse areas such as health-care and citrus production (the world’s largest citrus research center). In 2002, Florida began leading six other universities under a $15 million National Aeronautics and Space Administration grant to work on space-related research during a five-year period. The university’s partnership with Spain helped to create the world’s largest single-aperture optical telescope in the Canary Islands (the cost was $93 million).

Gran Telescopio Canarias [Instituto de Astrofísica de Canarias ](ES) sited on a volcanic peak 2,267 metres (7,438 ft) above sea level.

Plans are also under way for the University of Florida to construct a 50,000-square-foot (4,600 m2) research facility in collaboration with the Burnham Institute for Medical Research that will be in the center of University of Central Florida’s Health Sciences Campus in Orlando, Florida. Research will include diabetes, aging, genetics and cancer.

The University of Florida has made great strides in the space sciences over the last decade. The Astronomy Department’s focus on the development of image-detection devices has led to increases in funding, telescope time, and significant scholarly achievements. Faculty members in organic chemistry have made notable discoveries in astrobiology, while faculty members in physics have participated actively in the Laser Interferometer Gravitational-Wave Observatory (LIGO) project, the largest and most ambitious project ever funded by the NSF.

Caltech /MIT Advanced aLigo
.

Through the Department of Mechanical and Aerospace Engineering, the University of Florida is the lead institution on the NASA University Research, Engineering, and Technology Institute (URETI) for Future Space Transport project to develop the next-generation space shuttle.

In addition, the university also performs diabetes research in a statewide screening program that has been sponsored by a $10 million grant from the American Diabetes Association. The University of Florida also houses one of the world’s leading lightning research teams. University scientists have started a biofuels pilot plant designed to test ethanol-producing technology. The university is also host to a nuclear research reactor known for its Neutron Activation Analysis Laboratory. In addition, the University of Florida is the first American university to receive a European Union grant to house a Jean Monnet Centre of Excellence.

The University of Florida manages or has a stake in numerous notable research centers, facilities, institutes, and projects

Askew Institute
Bridge Software Institute
Cancer and Genetics Research Complex
Cancer Hospital
Center for African Studies
Center for Business Ethics Education and Research
Center for Latin American Studies
Center for Public Service
Emerging Pathogens Institute
Entrepreneurship and Innovation Center
International Center
Floral Genome Project
Florida Institute for Sustainable Energy
Florida Lakewatch
Gran Telescopio Canarias
Infectious Disease Pharmacokinetics Laboratory
Lake Nona Medical City
McKnight Brain Institute
Moffitt Cancer Center & Research Institute
National High Magnetic Field Laboratory
Rosemary Hill Observatory
UF Innovate-Sid Martin Biotech
UFHSA
UF Training Reactor
Whitney Laboratory for Marine Bioscience

Student media

The University of Florida community includes six major student-run media outlets and companion Web sites.

The Independent Florida Alligator is the largest student-run newspaper in the United States, and operates without oversight from the university administration.
The Really Independent Florida Crocodile, a parody of the Alligator, is a monthly magazine started by students.
Tea Literary & Arts Magazine is UF’s student-run undergraduate literary and arts publication, established in 1995.
WRUF (850 AM and 95.3 FM) includes ESPN programming, local sports news and talk programming produced by the station’s professional staff and the latest local sports news produced by the college’s Innovation News Center.
WRUF-FM (103.7 FM) broadcasts country music and attracts an audience from the Gainesville and Ocala areas.
WRUF-LD is a low-power television station that carries weather, news, and sports programming.
WUFT is a PBS member station with a variety of programming that includes a daily student-produced newscast.
WUFT-FM (89.1 FM) is an NPR member radio station which airs news and public affairs programming, including student-produced long-form news reporting. WUFT-FM’s programming also airs on WJUF-FM (90.1). In addition, WUFT offers 24-hour classical/arts programming on 92.1.

Various other journals and magazines are published by the university’s academic units and student groups, including the Bob Graham Center-affiliated Florida Political Review and the literary journal Subtropics.

From “WIRED“: “Astronomers Radically Reimagine the Making of the Planets”

From “WIRED“

Jun 26, 2022
Rebecca Boyle

Observations of faraway worlds have forced a near-total rewrite of the story of our solar system.

1
Newborn star systems imaged by the ALMA telescope, featuring protoplanetary disks with rings, arcs, filaments and spirals, are among the observations changing the theory of how planets are made.Illustration: S. Andrews et al.; N. Lira/ALMA/ESO/NAOJ/NRAO.

Start at the center, with the sun. Our middle-aged star may be more placid than most, but it is otherwise unremarkable. Its planets, however, are another story.

First, Mercury: More charred innards than fully fledged planet, it probably lost its outer layers in a traumatic collision long ago. Next come Venus and Earth, twins in some respects, though oddly only one is fertile. Then there’s Mars, another wee world, one that, unlike Mercury, never lost layers; it just stopped growing. Following Mars, we have a wide ring of leftover rocks, and then things shift. Suddenly there is Jupiter, so big it’s practically a half-baked sun, containing the vast majority of the material left over from our star’s creation. Past that are three more enormous worlds—Saturn, Uranus, and Neptune—forged of gas and ice. The four gas giants have almost nothing in common with the four rocky planets, despite forming at roughly the same time, from the same stuff, around the same star. The solar system’s eight planets present a puzzle: Why these?

Now look out past the sun, way beyond. Most of the stars harbor planets of their own. Astronomers have spotted thousands of these distant star-and-planet systems. But strangely, they have so far found none that remotely resemble ours. So the puzzle has grown harder: Why these, and why those?

The swelling catalog of extrasolar planets, along with observations of distant, dusty planet nurseries [Astronomy & Astrophysics] and even new data from our own solar system, no longer matches classic theories about how planets are made. Planetary scientists, forced to abandon decades-old models, now realize there may not be a grand unified theory of world-making—no single story that explains every planet around every star, or even the wildly divergent orbs orbiting our sun. “The laws of physics are the same everywhere, but the process of building planets is sufficiently complicated that the system becomes chaotic,” said Alessandro Morbidelli, a leading figure in planetary formation and migration theories and an astronomer at the Côte d’Azur Observatory in Nice, France.

Still, the findings are animating new research. Amid the chaos of world-building, patterns have emerged, leading astronomers toward powerful new ideas. Teams of researchers are working out the rules of dust and pebble assembly and how planets move once they coalesce. Fierce debate rages over the timing of each step, and over which factors determine a budding planet’s destiny. At the nexus of these debates are some of the oldest questions humans have asked ourselves: How did we get here? Is there anywhere else like here?

A Star and Its Acolytes Are Born

Astronomers have understood the basic outlines of the solar system’s origins for nearly 300 years. The German philosopher Immanuel Kant, who like many Enlightenment thinkers dabbled in astronomy, published a theory in 1755 that remains pretty much correct. “All the matter making up the spheres belonging to our solar system, all the planets and comets, at the origin of all things was broken down into its elementary basic material,” he wrote.

Indeed, we come from a diffuse cloud of gas and dust. Four and a half billion years ago, probably nudged by a passing star or by the shock wave of a supernova, the cloud collapsed under its own gravity to form a new star. It’s how things went down afterward that we don’t really understand.

Once the sun ignited, surplus gas swirled around it. Eventually, the planets formed there. The classical model that explained this, known as the minimum-mass solar nebula, envisioned a basic “protoplanetary disk” filled with just enough hydrogen, helium, and heavier elements to make the observed planets and asteroid belts. The model, which dates to 1977, assumed planets formed where we see them today, beginning as small “planetesimals,” then incorporating all the material in their area like locusts consuming every leaf in a field.

“The model was just somehow making this assumption that the solar disk was filled with planetesimals,” said Joanna Drążkowska, an astrophysicist at the Ludwig Maximilian University of Munich and author of a recent review chapter on the field. “People were not considering any smaller objects—no dust, no pebbles.”

Astronomers vaguely reasoned that planetesimals arose because dust grains pushed around by the gas would have drifted into piles, the way wind sculpts sand dunes. The classical model had planetesimals randomly strewn throughout the solar nebula, with a statistical distribution of sizes following what physicists call a power law, meaning there are more small ones than big ones. “Just a few years ago, everybody was assuming the planetesimals were distributed in a power law throughout the nebula,” said Morbidelli, “but now we know it is not the case.”

The change came courtesy of a handful of silver parabolas in Chile’s Atacama Desert. The Atacama Large Millimeter/submillimeter Array (ALMA) is designed to detect light from cool, millimeter-size objects, such as dust grains around newborn stars.

The European Southern Observatory [La Observatorio Europeo Austral] [Observatoire européen austral][Europäische Südsternwarte](EU)(CL)/National Radio Astronomy Observatory/National Astronomical Observatory of Japan(JP) ALMA Observatory (CL).

Starting in 2013 ALMA captured stunning images of neatly sculpted infant star systems, with putative planets embedded in the hazy disks around the new stars.

Astronomers previously imagined these disks as smooth halos that grew more diffuse as they extended outward, away from the star. But ALMA showed disks with deep, dark gaps, like the rings of Saturn; others with arcs and filaments; and some containing spirals, like miniature galaxies. “ALMA changed the field completely,” said David Nesvorny, an astronomer at the Southwest Research Institute in Boulder, Colorado.

ALMA disproved the classical model of planetary formation. “We have to now reject it and start thinking about completely different models,” Drążkowska said. The observations showed that, rather than being smoothly dispersed through the disk, dust collects in particular places, as dust likes to do, and that is where the earliest planet embryos are made. Some dust, for instance, probably clumps together at the “snow line,” the distance from the star where water freezes. Recently, Morbidelli and Konstantin Batygin, an astronomer at the California Institute of Technology, argued [Nature Astronomy] that dust also clumps at a condensation line where silicates form droplets instead of vapor. These condensation lines probably cause traffic jams, curbing the rate at which dust falls toward the star and allowing it to pile up.

“It’s a new paradigm,” Morbidelli said.

From Dust to Planets

Even before ALMA showed where dust likes to accrue, astronomers were struggling to understand how it could pile up quickly enough to form a planet—especially a giant one. The gas surrounding the infant sun would have dissipated within about 10 million years, which means Jupiter would have had to collect most of it within that time frame. That means dust must have formed Jupiter’s core very soon after the sun ignited. The Juno mission to Jupiter showed that the giant planet probably has a fluffy core, suggesting it formed fast. But how?

The problem, apparent to astronomers since about the year 2000, is that turbulence, gas pressure, heat, magnetic fields, and other factors would prevent dust from orbiting the sun in neat paths, or from drifting into big piles. Moreover, any big clumps would likely be drawn into the sun by gravity.

In 2005, Andrew Youdin and Jeremy Goodman, then of Princeton University, published a new theory [The Astrophysical Journal] for dust clumps that went part of the way toward a solution. A few years after the sun ignited, they argued, gas flowing around the star formed headwinds that forced dust to gather in clumps, and kept the clumps from falling into the star. As the primordial dust bunnies grew bigger and denser, eventually they collapsed under their own gravity into compact objects. This idea, called streaming instability, is now a widely accepted model for how millimeter-size dust grains can quickly turn into large rocks. The mechanism can form planetesimals about 100 kilometers across, which then merge with one another in collisions.

But astronomers still struggled to explain the creation of much bigger worlds like Jupiter.

In 2012, Anders Johansen and Michiel Lambrechts, both at Lund University in Sweden, proposed a variation [Astronomy & Astrophysics] on planet growth dubbed pebble accretion. According to their idea, planet embryos the size of the dwarf planet Ceres that arise through streaming instability quickly grow much bigger. Gravity and drag in the circumstellar disk would cause dust grains and pebbles to spiral onto these objects, which would grow apace, like a snowball rolling downhill.

2
Illustration: Merrill Sherman/Quanta Magazine.

Pebble accretion is now a favored theory for how gas giant cores are made, and many astronomers argue it may be taking place in those ALMA images, allowing giant planets to form in the first few million years after a star is born. But the theory’s relevance to the small, terrestrial planets near the sun is controversial. Johansen, Lambrechts, and five coauthors published research last year [Science Advances] showing how inward-drifting pebbles could have fed the growth of Venus, Earth, Mars, and Theia—a since-obliterated world that collided with Earth, ultimately creating the moon. But problems remain. Pebble accretion does not say much about giant impacts like the Earth-Theia crash, which were vital processes in shaping the terrestrial planets, said Miki Nakajima, an astronomer at the University of Rochester. “Even though pebble accretion is very efficient and is a great way to avoid issues with the classical model, it doesn’t seem to be the only way” to make planets, she said.

Morbidelli rejects the idea of pebbles forming rocky worlds, in part because geochemical samples suggest that Earth formed over a long period, and because meteorites come from rocks of widely varying ages. “It’s a matter of location,” he said. “Processes are different depending on the environment. Why not, right? I think that makes qualitative sense.”

Research papers appear nearly every week about the early stages of planet growth, with astronomers arguing about the precise condensation points in the solar nebula; whether planetesimals start out with rings that fall onto the planets; when the streaming instability kicks in; and when pebble accretion does, and where. People can’t agree on how Earth was built, let alone terrestrial planets around distant stars.

Planets on the Move

The five wanderers of the night sky—Mercury, Venus, Mars, Jupiter and Saturn—were the only known worlds besides this one for most of human history. Twenty-six years after Kant published his nebular hypothesis, William Herschel found another, fainter wanderer and named it Uranus. Then Johann Gottfried Galle spotted Neptune in 1846. Then, a century and a half later, the number of known planets suddenly shot up.

It started in 1995, when Didier Queloz and Michel Mayor of the University of Geneva pointed a telescope at a sunlike star called 51 Pegasi and noticed it wobbling. They inferred that it’s being tugged at by a giant planet closer to it than Mercury is to our sun. Soon, more of these shocking “hot Jupiters” were seen orbiting other stars.

The exoplanet hunt took off after the Kepler space telescope opened its lens in 2009.

NASA Kepler Space Telescope launched in 2009 and retired on October 30 2018.

We now know the cosmos is peppered with planets; nearly every star has at least one, and probably more. Most seem to have planets we lack, however: hot Jupiters, for instance, as well as a class of midsize worlds that are bigger than Earth but smaller than Neptune, uncreatively nicknamed “super-Earths” or “sub-Neptunes.” No star systems have been found that resemble ours, with its four little rocky planets near the sun and four gas giants orbiting far away. “That does seem to be something that is unique to our solar system that is unusual,” said Seth Jacobson, an astronomer at Michigan State University.

Enter the Nice model, an idea that may be able to unify the radically different planetary architectures. In the 1970s, geochemical analysis of the rocks collected by Apollo astronauts suggested that the moon was battered by asteroids 3.9 billion years ago—a putative event known as the Late Heavy Bombardment. In 2005, inspired by this evidence, Morbidelli and colleagues in Nice argued that Jupiter, Saturn, Uranus, and Neptune did not form in their present locations, as the earliest solar nebula model held, but instead moved around 3.9 billion years ago. In the Nice model (as the theory became known), the giant planets changed their orbits wildly at that time, which sent an asteroid deluge toward the inner planets.

3
Illustration: Merrill Sherman/Quanta Magazine.

The evidence for the Late Heavy Bombardment is no longer considered convincing, but the Nice model has stuck. Morbidelli, Nesvorny, and others now conclude that the giants probably migrated even earlier in their history, and that—in an orbital pattern dubbed the Grand Tack—Saturn’s gravity probably stopped Jupiter from moving all the way in toward the sun, where hot Jupiters are often found.

In other words, we might have gotten lucky in our solar system, with multiple giant planets keeping each other in check, so that none swung sunward and destroyed the rocky planets.

“Unless there is something to arrest that process, we would end up with giant planets mostly close to their host stars,” said Jonathan Lunine, an astronomer at Cornell University. “Is inward migration really a necessary outcome of the growth of an isolated giant planet? What are the combinations of multiple giant planets that could arrest that migration? It’s a great problem.”

There is also, according to Morbidelli, “a fierce debate about the timing” of the giant-planet migration—and a possibility that it actually helped grow the rocky planets rather than threatening to destroy them after they grew. Morbidelli just launched a five-year project to study whether an unstable orbital configuration soon after the sun’s formation might have helped stir up rocky remains, coaxing the terrestrial worlds into being.

The upshot is that many researchers now think giant planets and their migrations might dramatically affect the fates of their rocky brethren, in this solar system and others. Jupiter-size worlds might help move asteroids around, or they could limit the number of terrestrial worlds that form. This is a leading hypothesis for explaining the small stature of Mars: It would have grown bigger, maybe to Earth size, but Jupiter’s gravitational influence cut off the supply of material. Many stars studied by the Kepler telescope harbor super-Earths in close orbits, and scientists are split on whether those are likelier to be accompanied by giant planets farther out. Teams have convincingly shown both correlations and anti-correlations between the two exoplanet types, said Rachel Fernandes, a graduate student at the University of Arizona; this indicates that there’s not enough data yet to be sure. “That’s one of those things that is really fun at conferences,” she said. “You’re like, ‘Yeah, yell at each other, but which science is better?’ You don’t know.”

Rebounding Planets

Recently, Jacobson came up with a new model that radically changes the timing of the Nice model migration. In a paper published in April in Nature, he, Beibei Liu of Zhejiang University in China, and Sean Raymond of the University of Bordeaux in France argued that gas flow dynamics may have caused the giant planets to migrate only a few million years after they formed—100 times earlier than in the original Nice model and probably before Earth itself arose.

In the new model, the planets “rebounded,” moving in and then back out as the sun warmed up the gas in the disk and blew it off into oblivion. This rebound would have happened because, when a baby giant planet is bathed in a warm disk of gas, it feels an inward pull toward dense gas closer to the star and an outward pull from gas farther out. The inward pull is greater, so the baby planet gradually moves closer to its star. But after the gas begins to evaporate, a few million years after the star’s birth, the balance changes. More gas remains on the far side of the planet relative to the star, so the planet is dragged back out.

The rebound “is a pretty significant shock to the system. It can destabilize a very nice arrangement,” Jacobson said. “But this does a great job of explaining [features] of the giant planets in terms of their inclination and eccentricity.” It also tracks with evidence that hot Jupiters seen in other star systems are on unstable orbits—perhaps bound for a rebound.

Between condensation lines, pebbles, migrations, and rebounds, a complex story is taking shape. Still, for now, some answers may be in hiding. Most of the planet-finding observatories use search methods that turn up planets that orbit close to their host stars. Lunine said he would like to see planet hunters use astrometry, or the measurement of stars’ movements through space, which could reveal distantly orbiting worlds. But he and others are most excited for the Nancy Grace Roman Space Telescope, set to launch in 2027.

National Aeronautics and Space Administration Nancy Grace Roman Infrared Space Telescope [WFIRST] depiction.

Roman will use microlensing, measuring how the light from a background star is warped by the gravity of a foreground star and its planets.

Gravitational microlensing, S. Liebes, Physical Review B 133.B835, 133 (1964): 835.

That will let the telescope capture planets with orbital distances between Earth’s and Saturn’s—a “sweet spot,” Lunine said.

Nesvorny said modelers will continue tinkering with code and trying to understand the finer points of particle distributions, ice lines, condensation points, and other chemistry that may play a role in where planetesimals coalesce. “It will take the next few decades to understand that in detail,” he said.

Time is the essence of the problem. Human curiosity may be unbounded, but our lives are short, and the birth of planets lasts eons. Instead of watching the process unfold, we have only snapshots from different points.

Batygin, the Caltech astronomer, compared the painstaking effort to reverse-engineer planets to trying to model an animal, even a simple one. “An ant is way more complicated than a star,” Batygin said. “You can perfectly well imagine writing a code that captures a star in pretty good detail,” whereas “you could never model the physics and chemistry of an ant and hope to capture the whole thing. In planet formation, we are somewhere between an ant and a star.”

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

From The Massachusetts Institute of Technology: “New maps of asteroid Psyche reveal an ancient world of metal and rock”

From The Massachusetts Institute of Technology

June 15, 2022
Jennifer Chu

The varied surface suggests a dynamic history, which could include metallic eruptions, asteroid-shaking impacts, and a lost rocky mantle.

Maps of the asteroid Psyche
On the left, this map shows surface properties on Psyche, from sandy areas (purple/low) to rocky areas (yellow/high). The map on the right shows metal abundances on Psyche, from low (purple) to high (yellow).

1
Astronomers at MIT and elsewhere have mapped the composition of asteroid Psyche, revealing a surface of metal, sand, and rock. Credit: Screenshot courtesy of NASA.

Later this year, NASA is set to launch a probe the size of a tennis court to the asteroid belt, a region between the orbits of Mars and Jupiter where remnants of the early solar system circle the sun. Once inside the asteroid belt, the spacecraft will zero in on Psyche, a large, metal-rich asteroid that is thought to be the ancient core of an early planet. The probe, named after its asteroid target, will then spend close to two years orbiting and analyzing Psyche’s surface for clues to how early planetary bodies evolved.

Ahead of the mission, which is led by principal investigator Lindy Elkins-Tanton ’87, SM ’87, PhD ’02, planetary scientists at MIT and elsewhere have now provided a sneak peak of what the Psyche spacecraft might see when it reaches its destination.

In a paper appearing today in the Journal of Geophysical Research: Planets, the team presents the most detailed maps of the asteroid’s surface properties to date, based on observations taken by a large array of ground telescopes in northern Chile. The maps reveal vast metal-rich regions sweeping across the asteroid’s surface, along with a large depression that appears to have a different surface texture between the interior and its rim; this difference could reflect a crater filled with finer sand and rimmed with rockier materials.

Overall, Psyche’s surface was found to be surprisingly varied in its properties.

The new maps hint at the asteroid’s history. Its rocky regions could be vestiges of an ancient mantle — similar in composition to the rocky outermost layer of Earth, Mars, and the asteroid Vesta — or the imprint of past impacts by space rocks. Finally, craters that contain metallic material support the idea proposed by previous studies that the asteroid may have experienced early eruptions of metallic lava as its ancient core cooled.

“Psyche’s surface is very heterogeneous,” says lead author Saverio Cambioni, the Crosby Distinguished Postdoctoral Fellow in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS). “It’s an evolved surface, and these maps confirm that metal-rich asteroids are interesting, enigmatic worlds. It’s another reason to look forward to the Psyche mission going to the asteroid.”

Cambioni’s co-authors are Katherine de Kleer, assistant professor of planetary science and astronomy at Caltech, and Michael Shepard, professor of environmental, geographical, and geological sciences at Bloomsburg University.
===
Telescope Power

The surface of Psyche has been a focus of numerous previous mapping efforts. Researchers have observed the asteroid using various telescopes to measure light emitted from the asteroid at infrared wavelengths, which carry information about Psyche’s surface composition. However, these studies could not spatially resolve variations in composition over the surface.

Cambioni and his colleagues instead were able to see Psyche in finer detail, at a resolution of about 20 miles per pixel, using the combined power of the 66 radio antennas of the Atacama Large Millimeter/submillimeter Array (ALMA) in northern Chile.

The European Southern Observatory [La Observatorio Europeo Austral] [Observatoire européen austral][Europäische Südsternwarte](EU)(CL)/National Radio Astronomy Observatory/National Astronomical Observatory of Japan(JP) ALMA Observatory (CL).

Each antenna of ALMA measures light emitted from an object at millimeter wavelengths, within a range that is sensitive to temperature and certain electrical properties of surface materials.

“The signals of the ALMA antennas can be combined into a synthetic signal that’s equivalent to a telescope with a diameter of 16 kilometers (10 miles),” de Kleer says. “The larger the telescope, the higher the resolution.”

On June 19, 2019, ALMA focused its entire array on Psyche as it orbited and rotated within the asteroid belt. De Kleer collected data during this period and converted it into a map of thermal emissions across the asteroid’s surface, which the team reported in a 2021 study. Those same data were used by Shepard to produce the most recent high-resolution 3D shape model of Psyche, also published in 2021.

To catch a match

In the new study, Cambioni ran simulations of Psyche to see which surface properties might best match and explain the measured thermal emissions. In each of hundreds of simulated scenarios, he set the asteroid’s surface with different combinations of materials, such as areas of different metal abundances. He modeled the asteroid’s rotation and measured how simulated materials on the asteroid would give off thermal emissions. Cambioni then looked for the simulated emissions that best matched the actual emissions measured by ALMA. That scenario, he reasoned, would reveal the likeliest map of the asteroid’s surface materials.

“We ran these simulations area by area so we could catch differences in surface properties,” Cambioni says.

The study produced detailed maps of Psyche’s surface properties, showing that the asteroid’s façade is likely covered in a large diversity of materials. The researchers confirmed that, overall, Psyche’s surface is rich in metals, but the abundance of metals and silicates varies across its surface. This may be a further hint that, early in its formation, the asteroid may have had a silicate-rich mantle that has since disappeared.

They also found that, as the asteroid rotates, the material at the bottom of a large depression — likely a crater — changes temperature much faster than material along the rim. This suggests that the crater bottom is covered in “ponds” of fine-grained material, like sand on Earth, which heats up quickly, whereas the crater rims are composed of rockier, slower-to-warm materials.

“Ponds of fine-grained materials have been seen on small asteroids, whose gravity is low enough for impacts to shake the surface and cause finer materials to pool,” Cambioni says. “But Psyche is a large body, so if fine-grained materials accumulated on the bottom of the depression, this is interesting and somewhat mysterious.”

“These data show that Psyche’s surface is heterogeneous, with possible remarkable variations in composition,” says Simone Marchi, staff scientist at the Southwest Research Institute and a co-investigator on NASA’s Psyche mission, who was not involved in the current study. “One of the primary goals of the Psyche mission is to study the composition of the asteroid surface using its gamma rays and neutron spectrometer and a color imager. So, the possible presence of compositional heterogeneties is something that the Psyche Science Team is eager to study more.”

This research was supported by the EAPS Crosby Distinguished Postodoctoral Fellowship, and in part by the Heising-Simons Foundation.

See the full article here .


five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.

Stem Education Coalition

MIT Seal

USPS “Forever” postage stamps celebrating Innovation at MIT.

MIT Campus

The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

MIT Lincoln Laboratory campus

Massachusettes Institute of Technology-Haystack Observatory Westford, Massachusetts, USA, Altitude 131 m (430 ft).

Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities (AAU).

Foundation and vision

In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

“The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

Early developments

Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

Curricular reforms

In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

Recent history

The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

Caltech /MIT Advanced aLigo

It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.