Tagged: Accelerator Science Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:56 pm on November 27, 2014 Permalink | Reply
    Tags: Accelerator Science, , , , ,   

    From CERN: “How bright is the LHC?” 

    CERN New Masthead

    Nov 27, 2014
    l

    The LHCb Collaboration has published the results of a luminosity calibration with a precision of 1.12%. This is the most precise luminosity measurement achieved so far at a bunched-beam hadron collider.

    lm
    LHC beam results

    The absolute luminosity at a particle collider. is not only an important figure of merit for the machine, it is also a necessity for determining the absolute cross-sections for reaction processes. Specifically, the number of interactions, N, measured in an experiment depends on the value of cross-section σ and luminosity L, N = σL, so the precision obtained in measuring a given cross-section depends critically on the precision with which the luminosity is known. The luminosity itself depends on the number of particles in each collider beam and on the size of overlap of both beams at the collision point. At the LHC, dedicated instruments measure the beam currents, and hence the number of particles in each colliding beam, while the experiments measure the size of overlap of the beams at the collision point.

    A standard method to determine the overlap of the beams is the van der Meer scan, invented in 1968 by Simon van der Meer to measure luminosity in CERN’s Intersecting Storage Rings, the world’s first hadron collider. This technique, which involves scanning the beams across each other and monitoring the interaction rate, has been used by all of the four large LHC experiments. However, LHCb physicists proposed an alternative method in 2005 – the beam-gas imaging (BGI) method – which they successfully applied for the first time in 2009. This takes advantage of the excellent precision of LHCb’s Vertex Locator, a detector that is placed around the proton–proton collision point. The BGI method is based on reconstructing the vertices of “beam-gas” interactions, i.e. interactions between beam particles and residual gas nuclei in the beam pipe to measure the angles, positions and shapes of the individual beams without displacing them.

    To date, LHCb is the only experiment capable of using the BGI method. The technique involves calibrating the luminosity during special measurement periods at the LHC, and then tracking relative changes through changes in the counting rate in different sub-detectors. However, the vacuum pressure in the LHC is so low that for the technique to work with high precision, the beam–gas collision rate was increased by injecting neon gas into the LHC beam pipe during the luminosity calibration periods. This allowed the LHCb physicists to obtain precise images of the shapes of the individual beams, as illustrated in the left and middle graphs of the figure, which unraveled subtle but important features of the distributions of beam particles. By combining the beam–gas data with the measured distribution of beam–beam interactions, which provides the shape of the luminous region (the right graph in the figure), an accurate calibration of the luminosity was achieved.

    The beam–gas data also revealed that a small fraction of the beam’s charge is spread outside of the expected (i.e. “nominal”) bunch locations. Because only collisions of protons located in the nominal bunches are included in physics measurements, it was important to measure which fraction of the total beam current measured with the LHC’s current monitors participated in the collisions, i.e. contributed to the luminosity. Only LHCb could measure this fraction with sufficient precision, so the results of LHCb’s measurements of the fraction of charge outside the nominal bunch locations – the so-called “ghost” charge – were also used by the ALICE, ATLAS and CMS experiments.

    For proton–proton interactions at 8 TeV, a relative precision of the luminosity calibration of 1.47% was obtained using van der Meer scans and 1.43% using beam–gas imaging, resulting in a combined precision of 1.12%. The BGI method has proved to be so successful that it will now be used to measure beam sizes as part of monitoring and studying the LHC beams. Dedicated equipment will be installed in a modified region of the LHC ring near Point 4. This system, dubbed the Beam-Gas Vertexing system (BGV), is being developed by a collaboration from CERN, EPFL and RTWH Aachen. It includes a gas-injection system and a scintillating-fibre tracker telescope, which are expected to be commissioned with beam in 2015.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New
    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New

    LHC

    CERN LHC New

    LHC particles

    Quantum Diaries

     
  • richardmitnick 10:33 am on November 27, 2014 Permalink | Reply
    Tags: Accelerator Science, , , New York University, ,   

    From phys.org: “It’s particle-hunting season! NYU scientists launch Higgs Hunters Project” 

    physdotorg
    phys.org

    November 26, 2014
    No Writer Credit

    New York University scientists and their colleagues have launched the Higgs Hunters project, which will allow members of the general public to study images recorded at the Large Hadron Collider and to help search for previously unobserved particles.

    p
    A graphic shows particle traces extending from a proton-proton collision at the Large Hadron Collider in 2012. The event shows characteristics expected from the decay of the Standard Model Higgs boson to a pair of photons

    CERN LHC Map
    CERN LHC Grand Tunnel
    CERN LHC particles
    LHC at CERN

    The Higgs Hunters project follows the successful 2012 discovery of the famous Higgs boson particle, a sub-atomic particle that plays a key role in our understanding of the Universe, at the CERN laboratory near Geneva, where the collider is based.

    In 2013, Peter Higgs and François Englert received the Nobel Prize for Physics in recognition of their work to develop the theory of what is now known as the Higgs field, which gives elementary particles mass.

    The project will also include researchers from the University of Oxford, the University of Birmingham, the Zooniverse project, and the ATLAS experiment at CERN.

    CERN ATLAS New
    ATLAS at CERN’s LHC

    “Writing computer algorithms to identify these particles is tough, so we’re excited to see how much better we can do when people help us with the hunt,” observes Andy Haas, an assistant professor of physics at NYU and one of the project’s collaborators.

    “Having found the Higgs Boson particle, now we want to know how it works,” adds Alan Barr, a professor of particle physics at the University of Oxford, and lead scientist of the Higgs Hunters project. “To do that, we’d like you to look at these pictures of collisions and tell us what you can see.”

    The project scientists are searching for previously unobserved microscopic particles that might be created when the Higgs Boson particle decays. The new particles are predicted to leave tell-tale tracks inside the ATLAS experiment, which computer programs find difficult to identify, but which human eyes can often pick out.

    A successful detection would be a huge leap forward for particle physics, researchers say, as any new particles would lie beyond the “Standard Model” – the current best theory of the fundamental constituents of the universe.

    sm
    The Standard Model of elementary particles, with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    For more, please visit http://www.higgshunters.org .

    The project was funded by a Google Global Impact Award, the Science and Technology Research Council of the United Kingdom, and the National Science Foundation, which supports ATLAS work at NYU that includes research and education.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    About Phys.org in 100 Words

    Phys.org™ (formerly Physorg.com) is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004, Phys.org’s readership has grown steadily to include 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page set-up, RSS/XML feeds, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

     
  • richardmitnick 7:36 pm on November 26, 2014 Permalink | Reply
    Tags: Accelerator Science, , , ,   

    From BNL: “X-Ray Powder Diffraction Beamline at NSLS-II Takes First Beam and First Data” 

    Brookhaven Lab

    November 26, 2014
    Chelsea Whyte

    On November 6, Eric Dooryhee walked into a crowd of people excitedly talking at the X-ray Powder Diffraction (XPD) beamline beaming an enormous smile. The group broke into applause for the enormous achievement they had gathered to celebrate: the operators had opened a shutter to the electron storage ring of the National Synchrotron Light Source II and captured light for the first time at the XPD beamline. It was the second beamline at NSLS-II to achieve x-ray beam.

    BNL NSLS II Photo
    BNL NSLS Interior
    BNL NSLS II

    team
    The beamline group at XPD during their open house for first light at the beamline. They are led by Eric Dooryhee, the Powder Diffraction Beamline Group Leader, and Associate Laboratory Director for Photon Sciences and NSLS-II Project Director Steve Dierker. Within the beamline hutch behind them stands the specially designed robotic sample changer, which will allow for high through-put data collection at the beamline.

    “This is a big day for all of us,” said Dooryhee, the Powder Diffraction Beamline Group Leader. The list of acknowledgements he made reflected the huge effort of many support groups across the Photon Sciences Directorate and beyond, that made the milestone possible: administration and procurement staff, surveyors, riggers, carpenters, vacuum specialists, mechanical and electrical utilities technicians, equipment protection and personnel safety staff, x-ray optics metrology experts, scientists, designers, and engineers. “We couldn’t have achieved our first light without the commitment and support of many collaborators around the Lab, including work with Peter Siddons and his group, who are developing several state-of-the-art detectors for XPD.”

    The XPD core team includes Sanjit Ghose, beamline scientist in charge of operating XPD and consolidating its research program; Hengzi Wang, mechanical engineer; John Trunk, beamline technician; Andrew DeSantis, mechanical designer; and Wayne Lewis, controls engineer.

    The complexity of this accomplishment came through when Dooryhee talked about the effort put in by Wayne Lewis, the controls engineer for XPD.

    “How many motors, vacuum gauges and sensors did you have to take ownership of? Hundreds?” Dooryhee asked. Lewis wryly smiled and responded, “Yeah, a few.”

    It was Lewis who ultimately opened the shutter, allowing the white x-ray beam for the first time to travel through a diamond window and several other components until it was purposely intercepted by a beam stop. Both the window and the beamstop emitted a bright fluorescent light once struck by the x-rays, and the x-ray footprint at several locations down the beam pipe could thus be imaged and shown on large screens to everyone present.

    Eventually, once commissioning starts, a monochromator will select one part of the white beam at a particular color (or wavelength). This one-color (monochromatic) x-ray beam will go past the white beam stop and will be reflected off a four-and-a-half-foot long mirror and over to the sample.

    “As we open the shutter, the beam is spot on,” said Dooryhee. “We find the beam is very stable, and we are extremely happy with these start-up conditions, thanks to the work accomplished by the Accelerator Division. This concludes 5 years of preparation and installation, and now is the beginning of a new phase for us. We have to commission the entire beamline with the x-rays on, get beam safely into the experimental station, and transition to science as soon as we can.”

    Part of this “open house” celebration at XPD was a demonstration of the 250-pound robotic sample changer, which will operate within the lead-lined hutch while the x-ray beam is on. This robot will be able to perform unmanned and repetitive collection of data on a variety of sample holders in a reliable, reproducible and fast way. XPD is designed with high throughput efficiency in mind.

    The robot will also enable landmark experiments of radioactive samples, like those proposed by Lynne Ecker of Brookhaven’s Nuclear Science and Technology Department. Ecker was awarded $980,000 from the U.S. Department of Energy’s Nuclear Energy Enabling Technologies program that will enable cross-cutting research at XPD and will fundamentally improve the safety and performance of nuclear reactors.

    “BNL is a truly outstanding environment and our chance with NSLS-II is to interact with very high-level scientific collaborators across the Laboratory, that will enable XPD to host premier work from the Center for Functional Nanomaterials, the Nuclear Energy group, Chemistry, and Physics,” said Dooryhee. “And XPD is also planning to accommodate a part of the high-pressure program at NSLS-II that includes a large volume press and diamond-anvil cells that were previously in use at NSLS, in collaboration with the COMPRES consortium and Stony Brook University.”

    The XPD beamline research will focus on studies of catalysts, batteries, and other functional and technological materials under the conditions of synthesis and operation, and Dooryhee is optimistic about the science to come. He is also excited about the intersection of XPD’s scientific program with Brookhaven’s Laboratory Directed Research and Development (LDRD) program. “Young, active, committed scientists will have access to our beamline, and will help us develop new capabilities. Current LDRD-XPD partnerships have already led to the invention of a novel slit system for probing the sample with x-rays at well controlled locations and are helping develop a new method called “Modulation Enhanced Diffraction.”

    d
    NSLS-II diffraction image

    Just before publication of this feature, Dooryhee reported that the XPD team managed to condition and focus the x-ray monochromatic beam after only three weeks of commissioning. Shown here is the first diffraction image from NSLS-II:

    The very first scientific sample run on XPD is a new material system, “TaSe2-xSx ” — Sulfur-doped Tantalum Selenide — that is being studied by Cedomir Petrovic in the Condensed Matter Physics and Materials Sciences department at Brookhaven.

    At low temperature, electrons in both the pure TaSe2 and TaS2 compounds spontaneously form into charge density waves (CDWs), like ripples on the surface of a pond, but characteristics of the waves (such as the wavelength) are different. The question is, when you vary composition smoothly from one end of the series to the other end (meaning vary x in TaSe2-xSx), how do the waves cross over from one to the other? The surprise is that in between the waves disappear and are replaced by superconductivity – the ability of the material to conduct electricity with no resistance.

    “It is like mixing red paint and white paint, and instead of getting pink you get blue after mixing,” said professor Simon Billinge, joint appointee with Brookhaven and Columbia University, who has been the spokesperson and the chair of the beamline advisory team for the XPD beamline since the inception of the project. “The data from XPD provides crucial information about how the atomic structure varies with composition which is used to understand the delicate interplay of CDW and superconducting behavior in these materials.”

    “As well as being interesting in their own right, these studies at XPD are important to understand the phenomenon of unconventional high-temperature superconductivity, currently our best hope for technological devices for low loss power transmission, where a similar interplay of CDW and superconductivity is seen,” added Dooryhee.

    See the full article here.

    BNL Campus

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world.Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.
    i1

     
  • richardmitnick 3:32 pm on November 26, 2014 Permalink | Reply
    Tags: Accelerator Science, , , M.I.T.   

    From LC Newsline: “Vertical wonder” 

    Linear Collider Collaboration header
    Linear Collider Collaboration

    26 November 2014
    Joykrit Mitra

    In 2006, Fermilab’s Particle Physics Division teamed up with MIT’s Lincoln Labs to start work on the first iteration of a new kind chip for the proposed International Linear Collider’s vertex detector. A new way to slim down chips was emerging in the semiconductor industry, one that could potentially make it easier to measure the properties of incoming particles. Eight years and several iterations later, the chip is now close to being complete, and the ILC vertex detector is another step closer to being an engineering reality.

    set
    Fermilab’s vertically stacked chips bonded onto sensor wafers. Photo Credit: Reidar Hahn

    In old-fashioned circuit boards, components are arranged side by side on a flat surface. An electrical signal has to travel a long distance to reach the processor, and generates excess electrical noise in the process, reducing the clarity of the output. To solve this problem, the semiconductor industry started vertically stacking wafer-like silicon layers — each thinner than a human hair—and bonding them together chemically. The stacked arrangement is called a 3-D integrated circuit.

    A 3-D arrangement is especially useful for the ILC vertex detector, where the chip and its associated sensor need to be as thin as practicable so as not to disrupt the path of the incoming particles too much and interfere with their properties. Furthermore, the circuitry needs to make do with limited power and still manage to capture a particle’s position, time stamp of arrival and charge at a good resolution.

    Lincoln Labs and Fermilab collaborated to build this kind of a chip. The first iteration, VIP I – or vertically integrated pixel chip – was assembled in Lincoln Labs with three layers stacked together. The two labs went on to design a successor, VIP II-a.

    “When we originally started working on it, our goals were pretty ambitious,” said Ron Lipton of Fermilab’s Particle Physics Division who worked on detector R&D for the ILC and worked with the engineers designing the chip. “But it was clear that if you wanted to really make progress, you had to have commercial technology.”

    At this stage Tezzaron, based in Naperville, Illinois, and Ziptronix of Morrisville, North Carolina, were brought in to help develop VIP II-b, in which each wafer had a 192-by-192-pixel arrangement and greater resolution than its predecessors.

    Tezzaron had created a working 3-D prototype in 2004 connecting two wafers with tungsten contacts embedded in the silicon, and Ziptronix had found a way to get rid of the 50-micron- thick solder bumps being used industrially to connect each pixel on a chip surface to the sensor. Ziptronix engineers had replaced the bumps with metal cylinders only 5 microns in diameter and 1 micron high embedded in a glass insulator, decreasing the distance between pixel and sensor by a factor greater than 10. These advances were integrated into the latest iteration of the VIP.

    tm
    Tungsten mask of the Fermilab logo rendered using the VIP II-b chip. Photo Credit: Ron Lipton

    So far VIP II-b has been tested qualitatively. A mask of the Fermilab logo made of tungsten, 400 microns thick, was pressed against the chip and bombarded with a radioactive source, and the chip was able to reproduce a readout of the pattern at a high resolution with relatively low noise. The result showcases the device’s abilities and serves as testament that the basic circuitry works.

    Next up is detecting an actual particle beam. A collaboration between Argonne National Laboratory, Brown University and Fermilab to optimize the chip quantitatively for such a setup is under way.

    “We have all of the pieces necessary to build a functional prototype for the vertex detector,” Lipton said. “The next step will depend on how the ILC project proceeds.”

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Linear Collider Collaboration is an organisation that brings the two most likely candidates, the Compact Linear Collider Study (CLIC) and the International Liner Collider (ILC), together under one roof. Headed by former LHC Project Manager Lyn Evans, it strives to coordinate the research and development work that is being done for accelerators and detectors around the world and to take the project linear collider to the next step: a decision that it will be built, and where.

    Some 2000 scientists – particle physicists, accelerator physicists, engineers – are involved in the ILC or in CLIC, and often in both projects. They work on state-of-the-art detector technologies, new acceleration techniques, the civil engineering aspect of building a straight tunnel of at least 30 kilometres in length, a reliable cost estimate and many more aspects that projects of this scale require. The Linear Collider Collaboration ensures that synergies between the two friendly competitors are used to the maximum.

    Linear Collider Colaboration Banner

     
  • richardmitnick 2:46 pm on November 26, 2014 Permalink | Reply
    Tags: Accelerator Science, , , , Scintillators   

    From FNAL: “Scintillator extruded at Fermilab detects particles around the globe” 


    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    Wednesday, Nov. 26, 2014
    Troy Rummler

    Small, clear pellets of polystyrene can do a lot. They can help measure cosmic muons at the Pierre Auger Observatory, search for CP violation at KEK in Japan or observe neutrino oscillation at Fermilab. But in order to do any of these they have to go through Lab 5, located in the Fermilab Village, where the Scintillation Detector Development Group, in collaboration with the Northern Illinois Center for Accelerator and Detector Design (NICADD), manufactures the exclusive source of extruded plastic scintillator.

    scin
    The plastic scintillator extrusion line, shown here, produces detector material for export to experiments around the world. Photo: Reidar Hahn

    Like vinyl siding on a house, long thin blocks of plastic scintillator cover the surfaces of certain particle detectors. The plastic absorbs energy from collisions and releases it as measurable flashes of light. Fermilab’s Alan Bross and Anna Pla-Dalmau first partnered with local vendors to develop the concept and produce cost-effective scintillator material for the MINOS neutrino oscillation experiment. Later, with NIU’s Gerald Blazey, they built the in-house facility that has now exported high-quality extruded scintillator to experiments worldwide.

    “It was clear that extruded scintillator would have a big impact on large neutrino detectors,” Bross said, “but its widespread application was not foreseen.”

    Industrially manufactured polystyrene scintillators can be costly — requiring a labor-intensive process of casting purified materials individually in molds that have to be cleaned constantly. Producing the number of pieces needed for large-scale projects such as MINOS through casting would have been prohibitively expensive.

    Extrusion, in contrast, presses melted plastic pellets through a die to create a continuous noodle of scintillator (typically about four centimeters wide by two centimeters tall) at a much lower cost. The first step in the production line mixes into the melted plastic two additives that enhance polystyrene’s natural scintillating property. As the material reaches the die, it receives a white, highly reflective coating that holds in scintillation light. Two cold water tanks respectively bathe and shower the scintillator strip before it is cool enough to handle. A puller controls its speed, and a robotic saw finally cuts it to length. The final product contains either a groove or a hole meant for a wavelength-shifting fiber that captures the scintillation light and sends the signal to electronics in the most useful form possible.

    Bross had been working on various aspects of the scintillator cost problem since 1989, and he and Pla-Dalmau successfully extruded experiment-quality plastic scintillator with their vendors just in time to make MINOS a reality. In 2003, NICADD purchased and located at Lab 5 many of the machines needed to form an in-house production line.

    “The investment made by Blazey and NICADD opened extruded scintillators to numerous experiments,” Pla-Dalmau said. “Without this contribution from NIU, who knows if this equipment would have ever been available to Fermilab and the rest of the physics community?”

    Blazey agreed that collaboration was an important part of the plastic scintillator development.

    “Together the two institutions had the capacity to build the resources necessary to develop state-of-the-art scintillator detector elements for numerous experiments inside and outside high-energy physics,” Blazey said. “The two institutions remain strong collaborators.”

    Between their other responsibilities at Fermilab, the SDD group continues to study ways to make their scintillator more efficient. One task ahead, according to Bross, is to work modern, glass wavelength-shifting fibers into their final product.

    “Incorporation of the fibers into the extrusions has always been a tedious part of the process,” he said. “We would like to change that.”

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics.

     
  • richardmitnick 7:25 pm on November 24, 2014 Permalink | Reply
    Tags: Accelerator Science, ,   

    From Symmetry: “Creating a spark” 

    Symmetry

    November 24, 2014

    ec
    Photo by Fabricio Sousa, SLAC
    Eric Colby, US Department of Energy, Office of High Energy Physics

    A principle of 18th century mechanics holds that if a physical system is symmetric in some way, then there is a conservation law associated with the symmetry. Mathematician Emmy Noether generalized this principle in a proof in 1918. Her theorem, in turn, has provided a very powerful tool in physics, helping to describe the conservation of energy and momentum.

    Science has a long history of creativity generated through this kind of collaboration between fields.

    In the process of sharing ideas, researchers expose assumptions, discern how to clearly express concepts and discover new connections between them. These connections can be the sparks of creativity that generate entirely new ideas.

    In 1895, physicist Wilhelm Roentgen discovered X-rays while studying the effects of sending an electric current through low-pressure gas. Within a year, doctors made the first attempts to use them to treat cancer, first stomach cancer in France and later breast cancer in America. Today, millions of cancer patients’ lives are saved each year with clinical X-ray machines.

    A more recent example of collaboration between fields is the Web, originally developed as a way for high-energy physicists to share data. It was itself a product of scientific connection, between hypertext and Internet technologies.

    In only 20 years, it has transformed information flow, commerce, entertainment and telecommunication infrastructure.

    This connection transformed all of science. Before the Web, learning about progress in other fields meant visiting the library, making a telephone call or traveling to a conference. While such modest impediments never stopped interdisciplinary collaboration, they often served to limit opportunity.

    With the Web have come online journals and powerful tools that allow people to search for and instantly share information with anyone, anywhere, anytime. In less than a generation, a remarkable amount of the recorded history of scientific progress of the last roughly 3600 years has become instantly available to anyone with an Internet connection.

    Connections provide not only a source of creativity in science but also a way to accelerate science, both by opening up entirely new ways of formulating and testing theory and by providing direct applications of the fruits of basic R&D. The former opens new avenues for understanding our world. The latter provides applications of technologies outside their fields of origin. Both are vital.

    High-energy physics is actively working with other fields to jointly solve new problems. One example of this is the Accelerator Stewardship Program, which studies ways that particle accelerators can be used in energy and the environment, medicine, industry, national security and discovery science. Making accelerators that meet the cost, size and operating requirements of other applications requires pushing the technology in new directions. In the process we learn new ways to solve our own problems and produce benefits that are widely recognized and sought after. Other initiatives aim to strengthen intellectual connections between particle physics itself and other sciences.

    Working in concert with other fields, we will gain new ways of understanding the world around us.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 5:56 pm on November 23, 2014 Permalink | Reply
    Tags: Accelerator Science, , , , ,   

    From LHCb at CERN: “The proton beam knocks at the LHC door” 

    CERN New Masthead

    23 November 2014
    No Writer Credit

    The LHCb collaboration took proton interaction data this weekend

    team
    LHCb is an experiment set up to explore what happened after the Big Bang that allowed matter to survive and build the Universe we inhabit today.

    The proton beam knocked at the LHC’s very solid door this weekend and found it still closed, but nonetheless managed to provide the LHCb collaboration with very interesting data. The CERN accelerator system (see video) is now fully operational, except for the LHC collider itself. This past weekend, CERN accelerator system operators tested the two transfer lines between the SPS and LHC. One of these lines ends with a so-called beam stopper known as the “TED”, located at the end of the line about 300m from the LHCb detector. The TED is currently closed, and so absorbed the proton beam before it could enter the LHC. However many muons were produced during the absorption process, and these muons passed through the TED and traversed the LHCb detector.

    This “beam dump” experiment therefore created an excellent opportunity for LHCb physicists and engineers to commission the LHCb detector and data acquisition system. The collected data are also useful for detector studies and alignment purposes (i.e. determining the relative geometrical locations of the different sub-detectors with respect to each other).

    gr
    The image shows the shift leader, run coordinator, spokesperson and sub-detector experts in front of the LHCb data acquisition computer screens.

    LHCb took its last collision data on 14th February 2013. The two year Long Shutdown 1 (LS1) period that followed has been used for an extensive program of consolidation and maintenance (see 24 January 2014 “underground” news). Collisions are expected to resume again in Spring 2015.

    CERN LHC Map
    CERN LHC Grand Tunnel
    CERN LHC particles
    LHC at CERN

    See the full article, with video, here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New
    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New

    LHC

    CERN LHC New

    LHC particles

    Quantum Diaries

     
  • richardmitnick 3:00 pm on November 22, 2014 Permalink | Reply
    Tags: Accelerator Science, , , , , ,   

    From Triumf: “LHCb Experiment Confirms TRIUMF Prediction” 

    On Wednesday, November 19th, the LHCb collaboration at CERN’s Large Hadron Collider (LHC) announced the discovery of two new particles in the baryon family. The particles, known as the Xi_b’- and Xi_b*-, were predicted to exist by the quark model but had never been seen before.

    CERN LHCb New
    LHCb at CERN

    Randy Lewis, York University, and Richard Woloshyn (photographed), TRIUMF, submitted a paper together in 2009, “Bottom baryons from a dynamical lattice QCD simulation,” in which the masses of Xi_b’- and Xi_b* were predicted. This paper, among the eight theoretical papers cited in the LHCb collaboration report submitted to the Physical Review Letters, offered the LHCb researchers a light in the path of discovery.

    rw
    Richard Woloshyn

    “Theoretical and experimental physics complement each other in an important way,” said Petr Navratil, Head of Theory Department at TRIUMF. “Richard’s work illustrates how theoretical predictions motivate experimental efforts. Experimental results then provide feedback to improve the theoretical understanding.”

    The new particles are baryons made from three quarks bound together by the strong force. The types of quarks are different, though: the new Xib particles both contain one beauty (b), one strange (s), and one down (d) quark. Thanks to the heavyweight b quarks, the baryons are more than six times as massive as the proton. But the particles are more than just the sum of their parts: their mass also depends on how they are configured. Each of the quarks has an attribute called “spin“. In the Xi_b’- state, the spins of the two lighter quarks point in opposite directions, whereas in the Xi_b*- state they are aligned. This difference makes the Xi_b*- a little heavier.

    “Nature was kind and gave us two particles for the price of one,” said
    Matthew Charles of the CNRS’s LPNHE laboratory at Paris VI University.

    “The Xi_b’- is very close in mass to the sum of its decay products: if it had been just a little lighter, we wouldn’t have seen it at all using the decay signature that we were looking for.”

    “This is a very exciting result. Thanks to LHCb’s excellent hadron identification, which is unique among the LHC experiments, we were able to separate a very clean and strong signal from the background,” said Steven Blusk from Syracuse University in New York. “It demonstrates once again the sensitivity and how precise the LHCb detector is.”

    “I am happy that LHCb cites our work and that it appears on the broader stage, ” said Richard Woloshyn, “It shows the work we do here at TRIUMF and in Canada is important.”

    As well as the masses of these particles, the LHCb team studied their relative production rates, their widths – a measure of how unstable they are – and other details of their decays. The results match up with predictions based on the theory of Quantum Chromodynamics (QCD). QCD is part of the Standard Model of particle physics, the theory that describes the fundamental particles of matter, how they interact and the forces between them.

    sm
    The Standard Model of elementary particles, with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    “Our approach was based directly on QCD. These results give us confidence and show that the theory is adequate to deal with any measurement and to predict the outcomes of experiments,” said Richard.

    “This success is a reminder of TRIUMF’s leadership role in theoretical physics. Richard has been using the computational method called lattice QCD to make important contributions for many years, and I am one of several people who learned lattice QCD by spending time at TRIUMF with Richard,” said Randy Lewis.

    Richard admits that when he first saw the InterActions news release he did not expect it to be related to one of his theoretical ‘discoveries’ and set it aside to read later. It wasn’t until he saw the CBC headline, “New subatomic particles predicted by Canadians found at CERN” that he knew of his part in the discovery.

    See the full article here..

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Triumf Campus
    Triumf Campus

    World Class Science at Triumf Lab, British Columbia, Canada
    Canada’s national laboratory for particle and nuclear physics
    Member Universities:
    University of Alberta, University of British Columbia, Carleton University, University of Guelph, University of Manitoba, Université de Montréal, Simon Fraser University,
    Queen’s University, University of Toronto, University of Victoria, York University. Not too shabby, eh?

    Associate Members:
    University of Calgary, McMaster University, University of Northern British Columbia, University of Regina, Saint Mary’s University, University of Winnipeg, How bad is that !!

     
  • richardmitnick 12:27 pm on November 20, 2014 Permalink | Reply
    Tags: Accelerator Science, , , , ,   

    From CERN: “CERN makes public first data of LHC experiments” 

    CERN New Masthead

    20 Nov 2014
    Cian O’Luanaigh

    CERN today launched its Open Data Portal where data from real collision events, produced by experiments at the Large Hadron Collider (LHC) will for the first time be made openly available to all. It is expected that these data will be of high value for the research community, and also be used for education purposes.

    CERN LHC Map
    CERN LHC Grand Tunnel
    CERN LHC particles
    LHC at CERN

    cern

    “Launching the CERN Open Data Portal is an important step for our Organization. Data from the LHC programme are among the most precious assets of the LHC experiments, that today we start sharing openly with the world. We hope these open data will support and inspire the global research community, including students and citizen scientists,” says CERN Director-General Rolf Heuer.

    The principle of openness is enshrined in CERN’s founding Convention, and all LHC publications have been published Open Access, free for all to read and re-use. Widening the scope, the LHC collaborations recently approved Open Data policies and will release collision data over the coming years.

    The first high-level and analysable collision data openly released come from the CMS experiment and were originally collected in 2010 during the first LHC run. This data set is now publicly available on the CERN Open Data Portal. Open source software to read and analyse the data is also available, together with the corresponding documentation. The CMS collaboration is committed to releasing its data three years after collection, after they have been thoroughly studied by the collaboration.

    CERN CMS New
    CMS

    “This is all new and we are curious to see how the data will be re-used,” says CMS data preservation coordinator Kati Lassila-Perini. “We’ve prepared tools and examples of different levels of complexity from simplified analysis to ready-to-use online applications. We hope these examples will stimulate the creativity of external users.”

    In parallel, the CERN Open Data Portal gives access to additional event data sets from the ALICE, ATLAS, CMS and LHCb collaborations, which have been specifically prepared for educational purposes, such as the international masterclasses in particle physics benefiting over ten thousand high-school students every year. These resources are accompanied by visualisation tools.

    CERN ALICE New
    ALICE

    CERN ATLAS New
    ATLAS

    CERN LHCb New
    LHCb

    “Our own data policy foresees data preservation and its sharing. We have seen that students are fascinated by being able to analyse LHC data in the past and so, we are very happy to take the first steps and make available some selected data for education” says Silvia Amerio, data preservation coordinator of the LHCb experiment.

    “The development of this Open Data Portal represents a first milestone in our mission to serve our users in preserving and sharing their research materials. It will ensure that the data and tools can be accessed and used, now and in the future,” says Tim Smith of the CERN IT Department.

    All data on OpenData.cern.ch are shared under a Creative Commons CC0 public domain dedication; data and software are assigned unique DOI identifiers to make them citable in scientific articles; and software is released under open source licenses. The CERN Open Data Portal is built on the open-source Invenio Digital Library software, which powers other CERN Open Science tools and initiatives.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon
    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New
    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New

    LHC

    CERN LHC New

    LHC particles

    Quantum Diaries

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 9:42 am on November 19, 2014 Permalink | Reply
    Tags: Accelerator Science, , , , ,   

    From LHCb at CERN: “LHCb experiment observes two new baryon particles never seen before” 

    CERN New Masthead

    19 Nov 2014
    No Writer Credit

    graph

    Geneva 19 November 2014. Today the collaboration for the LHCb experiment at CERN’s Large Hadron Collider announced the discovery of two new particles in the baryon family. The particles, known as the Xi_b’- and Xi_b*-, were predicted to exist by the quark model but had never been seen before. A related particle, the Xi_b*0, was found by the CMS experiment at CERN in 2012. The LHCb collaboration submitted a paper reporting the finding to Physical Review Letters.

    CERN LHCb New
    LHCb at CERN

    CERN LHC Map
    CERN LHC Grand Tunnel
    CERN LHC particles
    LHC at CERN

    Like the well-known protons that the LHC accelerates, the new particles are baryons made from three quarks bound together by the strong force. The types of quarks are different, though: the new X_ib particles both contain one beauty (b), one strange (s), and one down (d) quark. Thanks to the heavyweight b quarks, they are more than six times as massive as the proton. But the particles are more than just the sum of their parts: their mass also depends on how they are configured. Each of the quarks has an attribute called “spin“. In the Xi_b’- state, the spins of the two lighter quarks point in opposite directions, whereas in the Xi_b*- state they are aligned. This difference makes the Xi_b*- a little heavier.

    “Nature was kind and gave us two particles for the price of one,” said Matthew Charles of the CNRS’s LPNHE laboratory at Paris VI University. “The Xi_b’- is very close in mass to the sum of its decay products: if it had been just a little lighter, we wouldn’t have seen it at all using the decay signature that we were looking for.”

    “This is a very exciting result. Thanks to LHCb’s excellent hadron identification, which is unique among the LHC experiments, we were able to separate a very clean and strong signal from the background,” said Steven Blusk from Syracuse University in New York. “It demonstrates once again the sensitivity and how precise the LHCb detector is.”

    As well as the masses of these particles, the research team studied their relative production rates, their widths – a measure of how unstable they are – and other details of their decays. The results match up with predictions based on the theory of Quantum Chromodynamics (QCD).

    QCD is part of the Standard Model of particle physics, the theory that describes the fundamental particles of matter, how they interact and the forces between them. Testing QCD at high precision is a key to refine our understanding of quark dynamics, models of which are tremendously difficult to calculate.

    sm
    The Standard Model of elementary particles, with the three generations of matter, gauge bosons in the fourth column, and the Higgs boson in the fifth.

    “If we want to find new physics beyond the Standard Model, we need first to have a sharp picture,” said LHCb’s physics coordinator Patrick Koppenburg from Nikhef Institute in Amsterdam. “Such high precision studies will help us to differentiate between Standard Model effects and anything new or unexpected in the future.”

    The measurements were made with the data taken at the LHC during 2011-2012. The LHC is currently being prepared – after its first long shutdown – to operate at higher energies and with more intense beams. It is scheduled to restart by spring 2015.

    Further information

    Caption diagram : The mass difference spectrum: the LHCb result shows strong evidence of the existence of two new particles the Xi_b’- (first peak) and Xi_b*- (second peak), with the very high-level confidence of 10 sigma. The black points are the signal sample and the hatched red histogram is a control sample. The blue curve represents a model including the two new particles, fitted to the data. Delta_m is the difference between the mass of the Xi_b0 pi- pair and the sum of the individual masses of the Xi_b0 and pi-.. INSET: Detail of the Xi_b’- region plotted with a finer binning.

    Link to the paper on Arxiv: http://arxiv.org/abs/1411.4849
    More about the result on LHCb’s collaboration website: http://lhcb-public.web.cern.ch/lhcb-public/Welcome.html#StrBeaBa
    Observation of a new Xi_b*0 beauty particle, on CMS’ collaboration website: http://cms.web.cern.ch/news/observation-new-xib0-beauty-particle
    Footnote(s)

    1. CERN, the European Organization for Nuclear Research, is the world’s leading laboratory for particle physics. It has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, the Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. Romania is a Candidate for Accession. Serbia is an Associate Member in the pre-stage to Membership. India, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have Observer Status.

    See the full article here.
    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New
    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New

    LHC

    CERN LHC New

    LHC particles

    Quantum Diaries

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 356 other followers

%d bloggers like this: